24小时热门版块排行榜    

查看: 402  |  回复: 4
本帖产生 1 个 博学EPI ,点击这里进行查看
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

leedobb

金虫 (正式写手)


swim8568(金币+50, 博学EPI+1): 2011-02-26 21:11:16
(1)解:令点C到AB的高度为h, AC= b,那么体系的拉格朗日量可写成

L = 1/2*m1*(dh/dt)^2 +2*(1/2)*m*[d (b^2-x^2)/dt ]^2 -m1gh
= 1/2*m1*(dh/dt)^2 +(1/2)*m*2*tan^2 (a) *(dh/dt)^2 -m1gh

由Euler-Lagrange公式可知
(m1+ 2*m*tan^2 a)*(d^2h/dt^2 )+m1gh =0
所以 (d^2h/dt^2) = -m1g/(m1+2m*tan^2*a)

第二题,

注意到B点的位置可以表达成(x,0)而M点的位置为 ( x/2, (4*L^2-x^2)^(1/2)/2 )

另外注意到开始时杆子的转速为零。因此拉格朗日量可写成

La = 1/2 m2 * ( d (x*ex+0*ey)/dt)^2 + 1/2 m1 * (d (x/2 *ex + (4*l^2-x^2)^(1/2)/2) /dt )^2 -m1*g *(4*l^2 -x^2)^(1/2)/2
注意式中ex,ey为指向x轴和y轴的单位向量,

把上面的求导求下,得,

L= 1/2 m2* dot(x)^2 + 1/2m1/4*( dot((4L^2-x^2)^(1/2)) ^2+dot(x)^2) -m1 g (4 l^2-x^2)^0.5/2
= 1/2 dot(x)^2 (m2 + m1 * (cot^2 a+1)/4)- m1 g (4 l^2-x^2)^0.5/2
=1/2 dot(x)^2 (m2 + m1 /sin^2 a/4))- m1 g (4 l^2-x^2)^0.5/2



再用Euler-Lagrange方程

dot(dL/d(dot(x)))- (dL/dx) =0

可得
dot^2(x)  (m2 + m1 /sin^2 a/4)  - m1 g cot a /2=0
所以

dot^2 (x) = 2 m1 g cot a/ (4m2 +m1/sin^2 a)
=2m1 g cos a/sina *sin^2a *(4m2*sin^2a +m1)
2楼2011-02-26 20:18:45
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

智能机器人

Robot (super robot)

我们都爱小木虫

找到一些相关的精华帖子,希望有用哦~

科研从小木虫开始,人人为我,我为人人
相关版块跳转 我要订阅楼主 swim8568 的主题更新
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见