| 查看: 883 | 回复: 6 | |||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||
[交流]
翻译美国药典拉米夫定
|
|||
|
Identification— A: Infrared Absorption 197M. B: The retention time of the major peak in the chromatogram of the Test solution corresponds to that in the chromatogram of the Resolution solution, as obtained in the test for Limit of lamivudine enantiomer. Light absorption— Its absorptivity (see Spectrophotometry and Light-Scattering 851) at 440 nm, determined in 4-cm cells with a 50 mg per mL solution in water, is not more than 0.0015. Water, Method Ic 921: not more than 0.2%. Limit of lamivudine enantiomer— 0.1 M Ammonium acetate solution— Dissolve about 7.7 g of ammonium acetate in water, and dilute with water to 1000 mL. Mobile phase— Prepare a suitable mixture of 0.1 M Ammonium acetate solution and methanol (95:5), mix, filter, and degas. Resolution solution— Dissolve an accurately weighed quantity of USP Lamivudine Resolution Mixture A RS in water to obtain a solution having a known concentration of about 0.25 mg per mL. Test solution— Transfer about 25 mg of Lamivudine, accurately weighed, to a 100-mL volumetric flask, dissolve in and dilute with water to volume, and mix. Chromatographic system (see Chromatography 621)— The liquid chromatograph is equipped with a 270-nm detector and a 4.6-mm × 25-cm column that contains packing L45. The column temperature is maintained at a constant temperature of between 15 and 30. The flow rate is about 1.0 mL per minute. Chromatograph the Resolution solution, and record the peak responses as directed for Procedure: the resolution, R, between lamivudine and lamivudine enantiomer is not less than 1.5. [note—The relative retention times are about 1.0 for lamivudine and about 1.2 for lamivudine enantiomer.] Procedure— Inject a volume (about 10 µL) of the Test solution into the chromatograph, record the chromatogram, and measure the responses for the major peaks. Calculate the percentage of lamivudine enantiomer in the portion of Lamivudine taken by the formula: 100[rU /(rU + rS)] in which rU and rS are the peak responses of lamivudine enantiomer and lamivudine, respectively: not more than 0.3% is found. Limit of residual solvents— Internal standard solution— Transfer about 1 mL of 2-pentanone, accurately measured, to a 100-mL volumetric flask, dilute with a mixture of dimethyl sulfoxide and water (1:1) to volume, and mix. Standard solution— Transfer 10 mL of Internal standard solution to a 100-mL volumetric flask. To the same flask add an accurately measured quantity of about 100 µL of each of the following: dehydrated alcohol, isopropyl acetate, methanol, and triethylamine. Dilute with a mixture of dimethyl sulfoxide and water (1:1) to volume, and mix. Test solution— Transfer about 5 g of Lamivudine, accurately weighed, to a 100-mL volumetric flask, add 10 mL of Internal standard solution, dilute with a mixture of dimethyl sulfoxide and water (1:1) to volume, and mix. Chromatographic system (see Chromatography 621)— The gas chromatograph is equipped with a split injection port, a flame-ionization detector, and a 0.53-mm × 50-m column coated with a 5-µm film of phase G1. The carrier gas is hydrogen at a pressure of 5 psig. The split flow rate is about 320 mL per minute. The chromatograph is programmed as follows. Initially the temperature of the column is maintained at 70 for 3 minutes, then increased at a rate of 30 per minute to 200, and maintained at that temperature for 6.5 minutes. The injection port temperature is maintained at 150 and the detector temperature is maintained at 250. Procedure— Separately inject equal volumes (about 0.5 µL) of the Standard solution and the Test solution into the chromatograph, record the chromatograms, and measure the peak areas. Calculate the percentage of each residual solvent in the portion of Lamivudine taken by the formula: 10(C/W)(RU / RS) in which C is the concentration, in mg per mL, of the respective analyte in the Standard solution; W is the weight, in g, of Lamivudine taken; and RU and RS are the peak response ratios of the respective analyte to the internal standard obtained from the Test solution and the Standard solution, respectively: not more than 0.2% of alcohol is found; not more than 0.2% of isopropyl acetate is found; not more than 0.1% of methanol is found; not more than 0.1% of triethylamine is found; and not more than 0.3% of total residual solvents is found. Chromatographic purity— 0.025 M Ammonium acetate solution, Mobile phase, System suitability solution, and Chromatographic system— Proceed as directed in the Assay. Salicylic acid solution— Dissolve an accurately weighed quantity of salicylic acid in Mobile phase, and dilute quantitatively, and stepwise if necessary, with Mobile phase to obtain a solution having a concentration of about 0.625 µg per mL. Standard solution— Use the Standard preparation, prepared as directed in the Assay. Test solution— Use the Assay preparation. Procedure— Separately inject equal volumes (about 10 µL) of Salicylic acid solution and the Test solution into the chromatograph, record the chromatograms, and measure all the peak responses. Calculate the percentage of salicylic acid in the portion of Lamivudine taken by the formula: (10C/W)(rU / rS) in which C is the concentration, in µg per mL, of salicylic acid in the Salicylic acid solution; W is the weight, in mg, of Lamivudine taken for the Test solution; and rU and rS are the salicylic acid peak responses obtained from the Test solution and the Salicylic acid solution, respectively. Calculate the percentage of other individual impurities in the portion of Lamivudine taken by the formula: 100(ri / rs) in which ri is the peak response for each impurity other than salicylic acid obtained from the Test solution; and rs is the sum of the responses for all the peaks: not more than 0.3% for any peak at a relative retention time of about 0.4 is found; not more than 0.2% for any peak at a relative retention time of about 0.9 is found; not more than 0.1% of salicylic acid is found; not more than 0.1% of any other individual impurity is found; and not more than 0.6% of total impurities is found. Assay— 0.025 M Ammonium acetate solution— Transfer about 1.9 g of ammonium acetate to a 1000-mL volumetric flask, dissolve in about 900 mL of water, adjust with acetic acid to a pH of 3.8 ± 0.2, dilute with water to volume, and mix. Mobile phase— Prepare a filtered and degassed mixture of 0.025 M Ammonium acetate solution and methanol (95:5). Make adjustments if necessary (see System Suitability under Chromatography 621). System suitability solution— Dissolve an accurately weighed quantity of USP Lamivudine Resolution Mixture B RS in Mobile phase to obtain a solution having a known concentration of about 0.25 mg per mL. Standard preparation— Dissolve an accurately weighed quantity of USP Lamivudine RS in Mobile phase, and dilute quantitatively, and stepwise if necessary, with Mobile phase to obtain a solution having a known concentration of about 0.25 mg per mL. Assay preparation— Transfer about 25 mg of Lamivudine, accurately weighed, to a 100-mL volumetric flask, dissolve in and dilute with Mobile phase to volume, and mix. Chromatographic system (see Chromatography 621)— The liquid chromatograph is equipped with a 277-nm detector and a 4.6-mm × 25-cm column that contains packing L1. The flow rate is about 1.0 mL per minute. The column temperature is maintained at 35. Chromatograph the System suitability solution, and record the peak responses as directed for Procedure: the resolution, R, between lamivudine and lamivudine diastereomer is not less than 1.5. [note—The relative retention times are about 1.0 for lamivudine and 0.9 for lamivudine diastereomer.] Chromatograph the Standard preparation, and record the peak responses as directed for Procedure: the relative standard deviation for replicate injections is not more than 2.0%. Procedure— Separately inject equal volumes (about 10 µL) of the Standard preparation and the Assay preparation into the chromatograph, record the chromatograms, and measure the responses for the lamivudine peaks. Calculate the quantity, in mg, of C8H11N3O3S in the portion of Lamivudine taken by the formula: 100C(rU / rS) in which C is the concentration, in mg per mL, of USP Lamivudine RS in the Standard preparation; and rU and rS are the peak responses obtained from the Assay preparation and the Standard preparation, respectively. Auxiliary Information— Please check for your question in the FAQs before contacting USP. Topic/Question Contact Expert Committee Monograph Behnam Davani, Ph.D., M.B.A. Senior Scientist 1-301-816-8394 (MDAA05) Monograph Development-Antivirals and Antimicrobials Reference Standards Lili Wang, Technical Services Scientist 1-301-816-8129 |
» 猜你喜欢
多组分精馏求助
已经有5人回复
交叉科学部支持青年基金,对三无青椒是个机会吗?
已经有7人回复
青椒八年已不青,大家都被折磨成啥样了?
已经有15人回复
免疫学博士有名额,速联系
已经有4人回复
国家基金申请书模板内插入图片不可调整大小?
已经有6人回复
国家级人才课题组招收2026年入学博士
已经有5人回复
Fe3O4@SiO2合成
已经有6人回复
青年基金C终止
已经有4人回复
26申博求博导推荐-遥感图像处理方向
已经有4人回复
» 抢金币啦!回帖就可以得到:
哈尔滨工程大学青岛创新发展基地招聘青年教师
+1/473
博后平台选择
+1/89
西北工业大学民航学院招博士与硕士复合材料方向
+1/72
中国石油大学(北京)国家级大人才团队博士招生2名:化学、材料、石油工程:油田化学
+1/72
关于本子打包
+1/64
征婚
+1/60
上海市“光探测材料与器件”工程技术研究中心(上海应用技术大学)招聘优秀研究人员
+1/29
中国科学院上海光学精密机械研究所 特种强激光薄膜课题组
+1/25
以色列理工-生物质塑料等催化转化及流体力学方向---全奖博士研究生和科研助理
+2/20
太原理工大学集成电路学院院长团队招收2026年博士研究生
+1/14
武汉工程大学董志兵教授课题组招收博士/硕士研究生(长期有效)
+1/12
诚征女友,非诚勿扰
+3/11
复旦大学化学系凡勇教授/张凡教授团队招聘博士后
+1/9
法国斯特拉斯堡大学有机光伏全奖博士招聘
+1/7
浙江大学 “分子智造”课题组 诚聘 博士后及科研助理
+1/6
中山大学柔性电子学院黄维院士团队诚招博士后(柔性可穿戴电子或相关方向)
+1/4
华南理工大学宋波教授招聘材料和化学方向博士后(长期有效)
+1/2
澳科大诚招2026年秋季全奖博士研究生(药剂学/生物材料方向)
+1/2
复旦大学化学系凡勇教授/张凡教授团队招聘博士后
+1/2
福建师范大学柔性电子学院 院士团队招2026级博士 光电器件、发光传感忆阻器
+1/1
5楼2010-12-28 09:36:21
3楼2010-12-23 23:05:48
6楼2010-12-29 20:33:49
7楼2010-12-31 14:06:18













回复此楼