| 查看: 1019 | 回复: 4 | |||
| 本帖产生 1 个 翻译EPI ,点击这里进行查看 | |||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||
[交流]
帮我看看翻译的对不对,修改一下语法等方面的问题
|
|||
|
In order to characterize probable electrode reaction pathways of adsorption H on Pt(100) surface, we applied energetically the most stable configuration which was obtained from the H adsorption to map out the minimum-energy paths(MEP) using elastic band method. Here, a (4×1) surface unit cell with a slab of three layers thickness(36 Pt atoms) was chosen to model adsorption of H on Pt(100) surface(the single structure determined lattice constant of 8.324Å was used for the production of Pt(100) surface). The slab was repeated periodically with a 13.962Å of vacuum region between the slabs. Plausible intermediates for the H-Pt(100) interactions was initially optimized by placing H atoms at two different active sites on the Pt(100) surface, including “Pt-bridge site and Pt-hollow site”, corresponding to the structure of Pt(100) surface. Obviously, the anode would lose electrons during electrode reaction. The adsorption energy and Pt-H distance for hydrogen on Pt(100) surface after optimization are presented in Table 1. The negative adsorption energy comes from the computational procedure that the geometry optimization is carried out only in no-spin-polarization calculation. Seeing from the Table 1, the adsorption energy for bridge site is larger than the hollow site’s. Namely, bridge site on the terrace is stable after geometry optimization, the hollow site on the terrace maybe the intermediate state. Furthermore, we analyzed Pt-H distance for hydrogen on Pt(100) surface(seen from table 1), Before electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.035 Å, 1.613 Å, respectively. The H-Pt distance at bridge site is shorter than that of hollow site. That is, the bridge site is more stable than another one. After electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.029 Å, 1.607 Å, respectively. Zhang******* used the Morse Potential to calculate Pt-H distance at the most stable state is 1.79 Å, which result is similar to ours. It is found that the distance of Pt-H becomes shorter during the electrode reaction. By comparing the bridge sites with the hollow sites, for Pt-H distance, it shows that the latter is shorter than the former and it is indicated that the adsorption energy for the latter will be larger. In conclusion, adsorption of H on Pt(100) can take place and the best adsorption site is the bridge site. |
» 猜你喜欢
三无产品还有机会吗
已经有4人回复
投稿返修后收到这样的回复,还有希望吗
已经有7人回复
压汞仪和BET测气凝胶孔隙率
已经有4人回复
博士申请都是内定的吗?
已经有14人回复
谈谈两天一夜的“延安行”
已经有13人回复
氨基封端PDMS和HDI反应快速固化
已经有11人回复
之前让一硕士生水了7个发明专利,现在这7个获批发明专利的维护费可从哪儿支出哈?
已经有11人回复
论文投稿求助
已经有4人回复
Applied Surface Science 这个期刊。有哪位虫友投过的能把word模板发给我参考一下嘛
已经有3人回复
投稿精细化工
已经有6人回复
» 抢金币啦!回帖就可以得到:
2026上海理工大学 光学工程博士招生(优青教授课题组,集成光机电、传感方向)
+5/410
87 年东北小哥定居苏州/杭州/上海,诚寻携手余生的你
+1/176
上海大学理学院纳米纤维化学(NFC)研究团队2026级博士招生(申请考核制)
+1/88
荧光分光光度计可测m5C含量---总体RNA甲基化极易定量检测试剂盒(荧光法)(A-P-9009)
+1/84
广东工业大学自动化学院国家特聘专家苏春翌教授招收2026年博士后及硕博研究生(推免)
+1/76
香港科技大学 Abhishek Kumar Srivastava 教授课题组 招收博士生
+1/74
香港中文大学(深圳)靳羽华教授交叉实验室招募2026年材料学博士生(光致变色)
+3/50
美国乔治亚南方大学(Georgia Southern University)招收环境分析化学全奖博士生
+2/46
湖大材料院袁达飞课题组招收2026年入学从事有机光电研究的博士研究生一名
+1/30
首都师范大学化学系 光功能团队招聘博士生
+1/28
211高校招聘博士后/副研究员/研究员等——环境化学、环境毒理/健康方向
+1/13
生物力学 细胞力学牵张拉伸仪 剪切压缩仪等国产自研设备 免费试用30天 全流程科研支持
+1/12
石河子大学李诚,李春艳团队招生26年博士研究生
+1/8
年底招聘有机合成
+1/6
山东大学药学院蔡容课题组诚招2026级申请考核制博士生
+1/6
双一流南林大理学院招收2026届催化方向博士研究生
+1/6
中国科大化学与材料科学学院/苏州高研院刘东/熊宇杰教授团队诚聘催化方向博士后
+1/6
电子科技大学李世彬课题组招聘传感器方向博士及博士后
+1/5
SCI文章辅助,无人机、计算机网络通信、算法方向 3纯4自7己0写9非③中1介⑦优0惠
+1/5
关于溴素的转移与滴加
+1/3
4楼2010-12-11 13:03:09
|
The first 2 sentences are rearranged: In order to characterize the probable electrode reaction pathways of H adsorption on Pt (100) surface, the most stable (energy) configuration was applied. By using elastic band method, the configuration was obtained from the minimum-energy paths (MEP) of the H adsorption. |
2楼2010-12-11 12:20:27
zhangzhiweia(金币+5, 翻译EPI+1):谢谢,您辛苦了 2010-12-11 18:21:55
| The most energetically stable configuration was obtained from the H adsorption by using elastic band method and was utilized to characterize probable electrode reaction pathways of adsorption H on Pt(100) surface by maping out the minimum-energy paths(MEP). A (4×1) surface unit cell with a slab of three layers thickness(36 Pt atoms) was selected to model adsorption of H on Pt(100) surface(the single structure determined lattice constant of 8.324Å was used for the production of Pt(100) surface). The slab was repeated periodically with a 13.962Å in vacuum region between the slabs. Plausible intermediates for the H-Pt(100) interactions was initially optimized by placing H atoms at two different active sites on the Pt(100) surface, including “Pt-bridge site and Pt-hollow site”, corresponding to the structure of Pt(100) surface. During electrode reaction,the anode would lose electrons. After optimization,the adsorption energy and Pt-H distance for hydrogen on Pt(100) surface are presented in Table 1. The negative adsorption energy comes from the computer procedure that the geometry optimization is carried out only in no-spin-polarization calculation. As shown in Table 1, the adsorption energy for bridge site is larger than that for the hollow site. Namely, bridge site on the terrace is more stable after geometry optimization, the hollow site on the terrace might be under the intermediate state. Furthermore, Pt-H distance for hydrogen on Pt(100) surface(seen from table 1) was analyzed. Before electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.035 Å, 1.613 Å respectively. The H-Pt distance at bridge site is shorter than that at hollow site. That is, the bridge site is more stable than another. After electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.029 Å and1.607 Å, respectively. Zhang******* reported the morse Potential of 1.79 Å for calculating Pt-H distance at the most stable state, similar to our result. The distance of Pt-H was found to become shorter in the electrode reaction. The Pt-H distance for the bridge sites is shorter as compared with that for the hollow sites, indicating that the adsorption energy for the latter will be larger. In conclusion, the best adsorption of H on Pt(100) occurs in the bridge site. |
5楼2010-12-11 13:24:28













回复此楼