| 查看: 1101 | 回复: 4 | |||
| 本帖产生 1 个 翻译EPI ,点击这里进行查看 | |||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||
[交流]
帮我看看翻译的对不对,修改一下语法等方面的问题
|
|||
|
In order to characterize probable electrode reaction pathways of adsorption H on Pt(100) surface, we applied energetically the most stable configuration which was obtained from the H adsorption to map out the minimum-energy paths(MEP) using elastic band method. Here, a (4×1) surface unit cell with a slab of three layers thickness(36 Pt atoms) was chosen to model adsorption of H on Pt(100) surface(the single structure determined lattice constant of 8.324Å was used for the production of Pt(100) surface). The slab was repeated periodically with a 13.962Å of vacuum region between the slabs. Plausible intermediates for the H-Pt(100) interactions was initially optimized by placing H atoms at two different active sites on the Pt(100) surface, including “Pt-bridge site and Pt-hollow site”, corresponding to the structure of Pt(100) surface. Obviously, the anode would lose electrons during electrode reaction. The adsorption energy and Pt-H distance for hydrogen on Pt(100) surface after optimization are presented in Table 1. The negative adsorption energy comes from the computational procedure that the geometry optimization is carried out only in no-spin-polarization calculation. Seeing from the Table 1, the adsorption energy for bridge site is larger than the hollow site’s. Namely, bridge site on the terrace is stable after geometry optimization, the hollow site on the terrace maybe the intermediate state. Furthermore, we analyzed Pt-H distance for hydrogen on Pt(100) surface(seen from table 1), Before electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.035 Å, 1.613 Å, respectively. The H-Pt distance at bridge site is shorter than that of hollow site. That is, the bridge site is more stable than another one. After electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.029 Å, 1.607 Å, respectively. Zhang******* used the Morse Potential to calculate Pt-H distance at the most stable state is 1.79 Å, which result is similar to ours. It is found that the distance of Pt-H becomes shorter during the electrode reaction. By comparing the bridge sites with the hollow sites, for Pt-H distance, it shows that the latter is shorter than the former and it is indicated that the adsorption energy for the latter will be larger. In conclusion, adsorption of H on Pt(100) can take place and the best adsorption site is the bridge site. |
» 猜你喜欢
情人节自我反思:在爱情中有过遗憾吗?
已经有10人回复
今年春晚有几个节目很不错,点赞!
已经有7人回复
基金正文30页指的是报告正文还是整个申请书
已经有5人回复
过年走亲戚时感受到了所开私家车的鄙视链
已经有5人回复
» 抢金币啦!回帖就可以得到:
坐标广州,征女友
+2/140
天津科技大学海洋与环境学院殷焕顺团队招博士生1名---分析化学领域
+1/83
ChineseResearchLaTeX: 开源、免费的vibe coding辅助国自然写作
+1/81
贺电中定位于“积极作用”,是不是对基金委工作不够满意?
+1/74
上海理工大学2026年系统科学学科海外骨干教师招聘启事
+2/38
海法大学线上开放日
+1/34
清华大学深圳国际研究生院招聘-博士后(长期有效)
+1/28
代朋友发 88公务员诚征男友
+1/21
英国布里斯托大学诚招博士生,博士后和联合培养生
+1/18
太原理工大学集成电路学院招收2026年博士研究生
+1/14
上海交通大学-宁波东方理工大学联合培养博士生
+1/10
上海交通大学-宁波东方理工大学联合培养博士生 – 力学
+1/10
湖南大学-分析检测技术和生物柔性传感器-招收1名博士研究生 (2026年,第二批)
+1/7
墨尔本大学(QS13)急招CSC博士(补齐全奖)/访问学者/博士后 (材料/生物医学/器官芯片等)
+1/4
怎么发布了求助贴了, 一发就转到删除栏了
+1/4
澳科大招收2026年秋季药物递送/生物材料方向硕士研究生(3月5日18:00报名截止)
+1/3
德国图宾根大学诚招全奖岗位制博士(地下流固化学反应耦合数值模拟方向)
+1/2
南京大学能源与资源学院徐加陵课题组招聘:科研助理、硕士生、博士生
+1/2
墨尔本大学(QS13)急招CSC博士(补齐全奖)/访问学者/博士后(生物医学材料/器官芯片)
+1/1
上海大学生物有机电子材料及器件团队博士研究生招聘
+1/1
4楼2010-12-11 13:03:09
|
The first 2 sentences are rearranged: In order to characterize the probable electrode reaction pathways of H adsorption on Pt (100) surface, the most stable (energy) configuration was applied. By using elastic band method, the configuration was obtained from the minimum-energy paths (MEP) of the H adsorption. |
2楼2010-12-11 12:20:27
zhangzhiweia(金币+5, 翻译EPI+1):谢谢,您辛苦了 2010-12-11 18:21:55
| The most energetically stable configuration was obtained from the H adsorption by using elastic band method and was utilized to characterize probable electrode reaction pathways of adsorption H on Pt(100) surface by maping out the minimum-energy paths(MEP). A (4×1) surface unit cell with a slab of three layers thickness(36 Pt atoms) was selected to model adsorption of H on Pt(100) surface(the single structure determined lattice constant of 8.324Å was used for the production of Pt(100) surface). The slab was repeated periodically with a 13.962Å in vacuum region between the slabs. Plausible intermediates for the H-Pt(100) interactions was initially optimized by placing H atoms at two different active sites on the Pt(100) surface, including “Pt-bridge site and Pt-hollow site”, corresponding to the structure of Pt(100) surface. During electrode reaction,the anode would lose electrons. After optimization,the adsorption energy and Pt-H distance for hydrogen on Pt(100) surface are presented in Table 1. The negative adsorption energy comes from the computer procedure that the geometry optimization is carried out only in no-spin-polarization calculation. As shown in Table 1, the adsorption energy for bridge site is larger than that for the hollow site. Namely, bridge site on the terrace is more stable after geometry optimization, the hollow site on the terrace might be under the intermediate state. Furthermore, Pt-H distance for hydrogen on Pt(100) surface(seen from table 1) was analyzed. Before electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.035 Å, 1.613 Å respectively. The H-Pt distance at bridge site is shorter than that at hollow site. That is, the bridge site is more stable than another. After electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.029 Å and1.607 Å, respectively. Zhang******* reported the morse Potential of 1.79 Å for calculating Pt-H distance at the most stable state, similar to our result. The distance of Pt-H was found to become shorter in the electrode reaction. The Pt-H distance for the bridge sites is shorter as compared with that for the hollow sites, indicating that the adsorption energy for the latter will be larger. In conclusion, the best adsorption of H on Pt(100) occurs in the bridge site. |
5楼2010-12-11 13:24:28













回复此楼