| 查看: 1048 | 回复: 4 | |||
| 本帖产生 1 个 翻译EPI ,点击这里进行查看 | |||
[交流]
帮我看看翻译的对不对,修改一下语法等方面的问题
|
|||
|
In order to characterize probable electrode reaction pathways of adsorption H on Pt(100) surface, we applied energetically the most stable configuration which was obtained from the H adsorption to map out the minimum-energy paths(MEP) using elastic band method. Here, a (4×1) surface unit cell with a slab of three layers thickness(36 Pt atoms) was chosen to model adsorption of H on Pt(100) surface(the single structure determined lattice constant of 8.324Å was used for the production of Pt(100) surface). The slab was repeated periodically with a 13.962Å of vacuum region between the slabs. Plausible intermediates for the H-Pt(100) interactions was initially optimized by placing H atoms at two different active sites on the Pt(100) surface, including “Pt-bridge site and Pt-hollow site”, corresponding to the structure of Pt(100) surface. Obviously, the anode would lose electrons during electrode reaction. The adsorption energy and Pt-H distance for hydrogen on Pt(100) surface after optimization are presented in Table 1. The negative adsorption energy comes from the computational procedure that the geometry optimization is carried out only in no-spin-polarization calculation. Seeing from the Table 1, the adsorption energy for bridge site is larger than the hollow site’s. Namely, bridge site on the terrace is stable after geometry optimization, the hollow site on the terrace maybe the intermediate state. Furthermore, we analyzed Pt-H distance for hydrogen on Pt(100) surface(seen from table 1), Before electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.035 Å, 1.613 Å, respectively. The H-Pt distance at bridge site is shorter than that of hollow site. That is, the bridge site is more stable than another one. After electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.029 Å, 1.607 Å, respectively. Zhang******* used the Morse Potential to calculate Pt-H distance at the most stable state is 1.79 Å, which result is similar to ours. It is found that the distance of Pt-H becomes shorter during the electrode reaction. By comparing the bridge sites with the hollow sites, for Pt-H distance, it shows that the latter is shorter than the former and it is indicated that the adsorption energy for the latter will be larger. In conclusion, adsorption of H on Pt(100) can take place and the best adsorption site is the bridge site. |
» 猜你喜欢
假如你的研究生提出不合理要求
已经有8人回复
萌生出自己或许不适合搞科研的想法,现在跑or等等看?
已经有4人回复
Materials Today Chemistry审稿周期
已经有4人回复
参与限项
已经有3人回复
实验室接单子
已经有4人回复
全日制(定向)博士
已经有4人回复
对氯苯硼酸纯化
已经有3人回复
求助:我三月中下旬出站,青基依托单位怎么办?
已经有12人回复
所感
已经有4人回复
要不要辞职读博?
已经有7人回复
» 抢金币啦!回帖就可以得到:
坐标济南,来碰碰运气
+1/447
北京理工大学郑长松教授课题组诚招2026年秋季博士/硕士研究生
+3/329
柔性电子全国重点实验室(南邮)诚聘博士后(长期有效)
+2/196
骨生物材料与侗药调控类器官再生湖南省普通高等学校重点实验室主任团队招聘了
+5/110
双一流南京医科大学招计算机、AI、统计、生物信息等方向26年9月入学博士
+1/93
北京航空航天大学教授课题组招生启事
+1/90
供应德国EXAKT艾卡特半导体导热散热材料三辊研磨机50 PLUS
+1/82
原子层沉积(ALD)磁控溅射PECVD等微纳代工服务:18817872921
+1/82
深圳大学材料学院黄妍斐教授课题组诚招2026年秋季入学博士生
+1/74
上海大学昝鹏教授、军事医学研究院伯晓晨研究员/倪铭副研究员 课题组招聘博士生
+1/73
时间的眼神
+1/66
真诚找对象
+1/58
昆士兰科技大学(QUT)博士招生信息 导师:李志勇教授
+1/38
中科院理化技术研究所张飞龙研究员/王树涛研究员团队招生(博士/硕士)
+1/27
中国地质大学(北京)王琳课题组招收2026年硕转博/申请-考核博士研究生-1月8日截止
+1/25
科研党/导师看过来,强推这个自带“引文验真”的国产工具,改作业效率翻倍
+1/14
香港中文大学(深圳)管君课题组 微纳光学方向 招收硕士、博士、博士后
+1/8
南京邮电大学材料科学与工程学院柔性电子研究所2026年招聘公告
+1/4
2026 博士自荐-机器人机构学方向
+1/3
英国斯旺西大学(Swansea University)招半导体材料和器件方向CSC博士生
+1/1
|
The first 2 sentences are rearranged: In order to characterize the probable electrode reaction pathways of H adsorption on Pt (100) surface, the most stable (energy) configuration was applied. By using elastic band method, the configuration was obtained from the minimum-energy paths (MEP) of the H adsorption. |
2楼2010-12-11 12:20:27
3楼2010-12-11 13:02:43
4楼2010-12-11 13:03:09
zhangzhiweia(金币+5, 翻译EPI+1):谢谢,您辛苦了 2010-12-11 18:21:55
| The most energetically stable configuration was obtained from the H adsorption by using elastic band method and was utilized to characterize probable electrode reaction pathways of adsorption H on Pt(100) surface by maping out the minimum-energy paths(MEP). A (4×1) surface unit cell with a slab of three layers thickness(36 Pt atoms) was selected to model adsorption of H on Pt(100) surface(the single structure determined lattice constant of 8.324Å was used for the production of Pt(100) surface). The slab was repeated periodically with a 13.962Å in vacuum region between the slabs. Plausible intermediates for the H-Pt(100) interactions was initially optimized by placing H atoms at two different active sites on the Pt(100) surface, including “Pt-bridge site and Pt-hollow site”, corresponding to the structure of Pt(100) surface. During electrode reaction,the anode would lose electrons. After optimization,the adsorption energy and Pt-H distance for hydrogen on Pt(100) surface are presented in Table 1. The negative adsorption energy comes from the computer procedure that the geometry optimization is carried out only in no-spin-polarization calculation. As shown in Table 1, the adsorption energy for bridge site is larger than that for the hollow site. Namely, bridge site on the terrace is more stable after geometry optimization, the hollow site on the terrace might be under the intermediate state. Furthermore, Pt-H distance for hydrogen on Pt(100) surface(seen from table 1) was analyzed. Before electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.035 Å, 1.613 Å respectively. The H-Pt distance at bridge site is shorter than that at hollow site. That is, the bridge site is more stable than another. After electrode reaction, the Pt-H distances for the hollow site and bridge site are 2.029 Å and1.607 Å, respectively. Zhang******* reported the morse Potential of 1.79 Å for calculating Pt-H distance at the most stable state, similar to our result. The distance of Pt-H was found to become shorter in the electrode reaction. The Pt-H distance for the bridge sites is shorter as compared with that for the hollow sites, indicating that the adsorption energy for the latter will be larger. In conclusion, the best adsorption of H on Pt(100) occurs in the bridge site. |
5楼2010-12-11 13:24:28












回复此楼