24小时热门版块排行榜    

CyRhmU.jpeg
查看: 5144  |  回复: 9
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

zhangwzh

金虫 (正式写手)

[交流] elsevier的elsarticle-template-harv.tex模版name,year参考文献格式问题

自己投elsevier期刊被拒,当时用elsarticle-template-num.tex!换另一个,发现期刊要求参考文献是人名加年代,所以用elsarticle-template-harv.tex,但发现没有变化!自己letax菜鸟,只会照葫芦画瓢,简单的在原来的加个方括号
如:  \bibitem[Jones et al.(1990)]{1}, 好像正文,参考文献都还会出现方括号[1]

请问那个elsarticle-harv.bst有啥用,咋用呢? 请大牛教教如何能实现下面的效果,说得详细点最好,自己是菜鸟:
Examples: ixas demonstrated in wheat (Allan, 1996a, 1996b, 1999; Allan and Jones, 1995). Kramer et al. (2000) have recently shown ...."
Reference to a journal publication:
Van der Geer J, Hanraads JAJ, Lupton RA. The art of writing a scientific article. J Sci Commun 2000;163:51 9.
回复此楼

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

快了
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

zjults

铜虫 (小有名气)

zhangwzh(金币+2): 2010-08-24 16:33:22
你如果用ubuntu linux上的texlive套件写文章,elseiver的类都不需要下载,再装一个Jabref管理文献库就更方便了
9楼2010-08-24 16:05:13
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 10 个回答

zjults

铜虫 (小有名气)


zhangwzh(金币+2): 2010-08-24 13:11:53
zhenghaiw(金币+1):感谢解答 2010-08-24 13:38:28
让你用bibtex,
\bibliographystyle{spbasic}
% Create the reference section using BibTeX:
\bibliography{你的参考文献名字,比如mybib.bib}

\end{document}
2楼2010-08-24 13:03:10
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

zhangwzh

金虫 (正式写手)

引用回帖:
Originally posted by zjults at 2010-08-24 13:03:10:
让你用bibtex,
\bibliographystyle{spbasic}
% Create the reference section using BibTeX:
\bibliography{你的参考文献名字,比如mybib.bib}

\end{document}

请问一定要用bibtex,还没用过,得现学! 当初用[1]这种方式,并没有用bibtex,是要这种效果,一定要用bibtex吗?
快了
3楼2010-08-24 13:13:01
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

zjults

铜虫 (小有名气)

zhangwzh(金币+5): 2010-08-24 14:18:30
用bibtex要简单的多,你只要把你查来文献放到bib文件里,象sciencedirect都支持参考文献记录的bibtex导出的就行,例如
@ARTICLE{Abia1993,
  author = {L. Abia and J. M. Sanz-Serna},
  title = {Partitioned Runge-Kutta Methods for Separable Hamiltonian Problems},
  journal = {Mathematics of Computation},
  year = {1993},
  volume = {60},
  pages = {617-634},
  number = {202},
  month = {April},
  abstract = {Separable Hamiltonian systems of differential equations have the form
        dp/dt = -∂ H/∂ q, dq/dt = ∂ H/∂ p, with a Hamiltonian function H
        that satisfies H = T(p) + V(q) (T and V are respectively the kinetic
        and potential energies). We study the integration of these systems
        by means of partitioned Runge-Kutta methods, i.e., by means of methods
        where different Runge-Kutta tableaux are used for the p and q equations.
        We derive a sufficient and "almost" necessary condition for a partitioned
        Runge-Kutta method to be canonical, i.e., to conserve the symplectic
        structure of phase space, thereby reproducing the qualitative properties
        of the Hamiltonian dynamics. We show that the requirement of canonicity
        operates as a simplifying assumption for the study of the order conditions
        of the method.},
  timestamp = {2010.04.12}
}
4楼2010-08-24 13:39:48
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
普通表情 高级回复(可上传附件)
信息提示
请填处理意见