24小时热门版块排行榜    

查看: 1365  |  回复: 7
本帖产生 1 个 博学EPI ,点击这里进行查看

21056651

木虫 (小有名气)

[求助] 请教matlap

2.(25分)给定数据
x        1.30        1.32        1.34        1.36        1.38
f(x)        3.60210        3.90330        4.25560        4.67344        5.17744
请用MATLAB求最小二乘拟合二次多项式,并作出拟合曲线。再用组合Simpson公式计算  的近似值。

3.(15分)用Gauss-Seidel迭代通过MATLAB求解下列线性方程组的解。
       -2x1+2x2+3x3=12
              -4x1+2x2+x3=12
               x1+2x2+3x3=16

4.(25分)给定数据
x        0        2        3        5
f(x)        1        -3        -4        2
通过MATLAB求出f(x)的3次Lagrange插值多项式和3次Newton插值多项式。

5.(25分)用MATLAB计算填料吸收塔的总传质单元数NOG
逆流操作的填料吸收塔,在温度20℃、压力101.325kPa的条件下,用水洗涤含有5.5%SO2的空气,使SO2下降到0.5%。当液气比为40时,求取以气相浓度为基准的总传质单元数NOG。若以气相浓度为基准的总传质单元高度HOG=0.69m,进而求填料塔高度。进塔水中不含SO2,20℃时水对SO2的溶解度数据如表中。
20℃时水对SO2的溶解度数据
x×103        1.96        1.40        0.846        0.562        0.422        0.281        0.141        0.056
y×103        51.3        34.2        18.6        11.2        7.63        4.21        1.58        0.658
要求写出程序和运算结果,选修课,实验没顾上。愿高手相助。
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

lg2880

铁杆木虫 (正式写手)

【鬼迷日眼】

天呐,看到就头晕,很久没弄这个软件了,忘记了 啊
宁可心在江湖言江湖,不可身在江湖怨江湖!
2楼2010-07-03 19:55:59
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

shp011222

铁杆木虫 (著名写手)

【答案】应助回帖

是matlab 不是matlap 楼主求助的题目写错了,会误导别人的……
3楼2010-07-03 22:08:16
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

21056651

木虫 (小有名气)

不好意思,是matlab

引用回帖:
Originally posted by shp011222 at 2010-07-03 22:08:16:
是matlab 不是matlap 楼主求助的题目写错了,会误导别人的……

不好意思,是matlab
4楼2010-07-03 23:03:15
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

mapingke

木虫 (著名写手)

【答案】应助回帖

自己弄去。。。。。。。。。。。。。。!!!
5楼2010-07-04 00:36:39
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

shengtang

金虫 (小有名气)

【答案】应助回帖

Errrr... I think it should be Matlab not Matlap... it would be better if you can change the title...
6楼2010-07-04 01:05:59
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

lcg2009

荣誉版主 (著名写手)

【答案】应助回帖

21056651(金币+5, 博学EPI+1): 2010-07-04 10:06:48
第一题第一小问源程序:
>> x=[1.30 1.32 1.34 1.36 1.38];
>> y=[3.60210 3.90330 4.25560 4.67344 5.1744];
>> plot(x,y,'+')
>> lsline
一箪食,一瓢饮,在陋巷。
7楼2010-07-04 09:41:59
已阅   关注TA 给TA发消息 送TA红花 TA的回帖

lcg2009

荣誉版主 (著名写手)

【答案】应助回帖

21056651(金币+5): 2010-07-04 23:14:30
拉格朗日函数的定义
function yi=agrange(x,y,xi)

%Lagrange插值多项式,其中,

%x为向量,全部的插值节点;

%y为向量,插值节点处的函数值;

%xi为标量,被估计函数的自变量:

%yi为xi处的函数估计值.

n=length(x);

m=length(y);

%输入的插值点与它的函数值应有相同的个数

if n~=m

error('The length of X must be equal!');

return;

end

p=zeros(1,n);

for k=1:n

t=ones(1,n);

for j=1:n

      if j~=k

  %输入的插值节点必须互异

       if abs(x(k)-x(j))< eps

       error('the DATA is error!');

       break;

       return;

       end

    end

    t(1,j)=(xi-x(j))/(x(k)-x(j));

     t(1,k)=1;

   end

   p(k)=prod(t);

end     

yi=sum(y.*p);
时间太忙就做这么做吧!其他题目建议楼主先百度再自己慢慢调试。
一箪食,一瓢饮,在陋巷。
8楼2010-07-04 09:44:05
已阅   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 21056651 的主题更新
信息提示
请填处理意见