| 查看: 506 | 回复: 2 | |||
| 【有奖交流】积极回复本帖子,参与交流,就有机会分得作者 yaoshunbo 的 8 个金币 ,回帖就立即获得 1 个金币,每人有 1 次机会 | |||
[交流]
欢迎引用
|
|||
|
欢迎引用 摘要: Hybrid electric vehicles can achieve better fuel economy than conventional vehicles by utilizing multiple power sources. While these power sources have been controlled by rule-based or optimization-based control algorithms, recent studies have shown that machine learning-based con trol algorithms such as online Deep Reinforcement Learning (DRL) can effectively control the power sources as well. However, the optimization and training processes for the online DRL-based pow ertrain control strategy can be very time and resource intensive. In this paper, a new offline–online hybrid DRL strategy is presented where offline vehicle data are exploited to build an initial model and an online learning algorithm explores a new control policy to further improve the fuel economy. In this manner, it is expected that the agent can learn an environment consisting of the vehicle dynamics in a given driving condition more quickly compared to the online algorithms, which learn the optimal control policy by interacting with the vehicle model from zero initial knowledge. By incorporating a priori offline knowledge, the simulation results show that the proposed approach not only accelerates the learning process and makes the learning process more stable, but also leads to a better fuel economy compared to online only learning algorithms. With the advancements of data science, machine learning has become a vital tool for improving decision making by using raw data and information as input. Significant results can be seen by using different machine learning techniques in various real-world domains, such as cybersecurity systems, engineering, healthcare, e-commerce, agriculture, etc. [1] [1] Yao, Z.; Yoon, H.-S.; Hong, Y.-K. Control of Hybrid Electric Vehicle Powertrain Using Offline-Online Hybrid Reinforcement Learning. Energies 2023, 16, 652. https://doi.org/10.3390/en16020652 |
» 猜你喜欢
同一篇文章,用不同账号投稿对编辑决定是否送审有没有影响?
已经有3人回复
郑州大学田佳佳团队诚招2026年入学博士研究生
已经有0人回复
机械工程论文润色/翻译怎么收费?
已经有149人回复
钛粉末烧结材料寻求新的应用范围
已经有0人回复
材料科学基础
已经有0人回复
微米级金属粉末烧结材料,科研供样
已经有4人回复
» 抢金币啦!回帖就可以得到:
Ei期刊青年编委招募(工程设计方向)
+1/372
哈工深国家级青年人才王龙龙教授团队—诚招新能源电池方向博士和硕士研究生
+1/176
桂林理工大学材料科学与工程学院诚聘青年教师
+1/119
首都师范大学化学系 光功能团队招聘博士生
+1/100
上市公司招聘电解液添加剂研发人员
+1/80
想要有个家
+1/74
中国地质大学(武汉)—国家级青年人才杨明教授组-招收博士-新能源材料化学及催化材料
+1/73
【坐标深圳|94年男生|想认真找个伴】
+1/66
以色列理工-生物质塑料等催化转化及流体力学方向---全奖博士研究生和科研助理
+2/46
2026申博自荐
+1/45
浙江大学药学院张小昀课题组诚聘博士后、研究助理 (核酸化学生物学方向)
+1/44
华北电力大学机械工程系输电线路工程方向招聘优秀青年人才或师资博士后
+2/36
香港中文大学与香港中文大学(深圳)联合培养博士后招聘启事
+1/33
工作一年半了,突然分配到浮选药剂的合成,我想问问浮选药剂是不是夕阳产业了
+1/31
论文即将投出,求发表,求祝福,传递好运
+1/25
浙江工业大学国家优青朱艺涵团队在固态电池解构与设计方向招收2026年博士生2名
+1/22
天津医科大学基础医学院张恒课题组博士后招聘
+1/21
新加坡南洋理工大学招聘博士后(固态电池,固体离子导体,转化正极方向)
+1/9
国家“双一流”建设高校-南京林业大学-国家级青年人才团队招聘
+1/6
天津大学建工学院课题组诚招2026级博士研究生
+1/4
简单回复
tzynew2楼
2023-02-28 21:40
回复
yaoshunbo(金币+1): 谢谢参与
2023-02-28 21:52
回复
yaoshunbo(金币+1): 谢谢参与












回复此楼