| 查看: 505 | 回复: 2 | |||
| 【有奖交流】积极回复本帖子,参与交流,就有机会分得作者 yaoshunbo 的 8 个金币 ,回帖就立即获得 1 个金币,每人有 1 次机会 | |||
[交流]
欢迎引用
|
|||
|
欢迎引用 摘要: Hybrid electric vehicles can achieve better fuel economy than conventional vehicles by utilizing multiple power sources. While these power sources have been controlled by rule-based or optimization-based control algorithms, recent studies have shown that machine learning-based con trol algorithms such as online Deep Reinforcement Learning (DRL) can effectively control the power sources as well. However, the optimization and training processes for the online DRL-based pow ertrain control strategy can be very time and resource intensive. In this paper, a new offline–online hybrid DRL strategy is presented where offline vehicle data are exploited to build an initial model and an online learning algorithm explores a new control policy to further improve the fuel economy. In this manner, it is expected that the agent can learn an environment consisting of the vehicle dynamics in a given driving condition more quickly compared to the online algorithms, which learn the optimal control policy by interacting with the vehicle model from zero initial knowledge. By incorporating a priori offline knowledge, the simulation results show that the proposed approach not only accelerates the learning process and makes the learning process more stable, but also leads to a better fuel economy compared to online only learning algorithms. With the advancements of data science, machine learning has become a vital tool for improving decision making by using raw data and information as input. Significant results can be seen by using different machine learning techniques in various real-world domains, such as cybersecurity systems, engineering, healthcare, e-commerce, agriculture, etc. [1] [1] Yao, Z.; Yoon, H.-S.; Hong, Y.-K. Control of Hybrid Electric Vehicle Powertrain Using Offline-Online Hybrid Reinforcement Learning. Energies 2023, 16, 652. https://doi.org/10.3390/en16020652 |
» 猜你喜欢
稀土掺杂光致发光材料中的晶体场强与发射波长的关系
已经有7人回复
激发光谱分析
已经有5人回复
机械工程论文润色/翻译怎么收费?
已经有177人回复
智能高分子相关专业硕士已毕业,接受科研助理岗位,后转为博士在读
已经有5人回复
各位院士大佬,帮忙看看几C?
已经有107人回复
美国科罗拉多ASME SHTC2025参会经验分享
已经有0人回复
MOCVD可逆气相反应求助
已经有0人回复
» 抢金币啦!回帖就可以得到:
桂林理工大学材料科学与工程学院诚聘青年教师
+1/120
坐标广州,征女友
+2/90
华北电力大学机械工程系输电线路工程方向招聘优秀青年人才或师资博士后
+2/90
寻找承接企业/科研机构/高校:启明人才计划(上海及长三角方向)
+1/85
加拿大/英属哥伦比亚大学曹彦凯课题组招收全奖博士/博后 [机器学习/优化/控制方向]
+1/82
双一流大学-湘潭大学“电化学能源储存与转换”湖南省重点实验室招生电池方向博士生
+1/71
~跨夜散金,祝大饼生日快乐,天天开心~
+2/64
以色列理工-生物质塑料等催化转化及流体力学方向---全奖博士研究生和科研助理
+2/62
因为雪而勾起的一些往事
+1/59
澳门科技大学2026年数学博士招生—杨钧翔助理教授计算物理与数学课题组
+1/38
天津医科大学基础医学院张恒课题组博士后招聘
+1/21
澳门科技大学2026年数学博士招生——计算物理与数学课题组: 相场与计算流体动力学
+1/11
HBI的合成交流
+1/8
意大利CSC机器人方向博士招生
+1/7
北理工柔性电子国家杰青团队招【博士后】【科研助理(读博意向)】
+1/5
招收26年秋季入学博士生(北科大高精尖学院 力学超材料/机器学习/增材制造相关方向)
+1/4
天津大学建工学院课题组诚招2026级博士研究生
+1/4
北理工柔性电子国家杰青团队招【博士后】【科研助理(读博意向)】
+1/4
澳大利亚南昆士兰大学(UniSQ)量子点课题组 招收CSC全奖博士生
+1/3
海南大学化学院 招聘 材料与电化学方向——研究助理,博士(2026年入学)
+1/1
简单回复
tzynew2楼
2023-02-28 21:40
回复
yaoshunbo(金币+1): 谢谢参与
2023-02-28 21:52
回复
yaoshunbo(金币+1): 谢谢参与













回复此楼