| 查看: 509 | 回复: 5 | |||
| 【有奖交流】积极回复本帖子,参与交流,就有机会分得作者 yaoshunbo 的 7 个金币 ,回帖就立即获得 1 个金币,每人有 1 次机会 | |||
[交流]
欢迎引用
|
|||
|
Hybrid electric vehicles can achieve better fuel economy than conventional vehicles by utilizing multiple power sources. While these power sources have been controlled by rule-based or optimization-based control algorithms, recent studies have shown that machine learning-based con trol algorithms such as online Deep Reinforcement Learning (DRL) can effectively control the power sources as well. However, the optimization and training processes for the online DRL-based pow ertrain control strategy can be very time and resource intensive. In this paper, a new offline–online hybrid DRL strategy is presented where offline vehicle data are exploited to build an initial model and an online learning algorithm explores a new control policy to further improve the fuel economy. In this manner, it is expected that the agent can learn an environment consisting of the vehicle dynamics in a given driving condition more quickly compared to the online algorithms, which learn the optimal control policy by interacting with the vehicle model from zero initial knowledge. By incorporating a priori offline knowledge, the simulation results show that the proposed approach not only accelerates the learning process and makes the learning process more stable, but also leads to a better fuel economy compared to online only learning algorithms. With the advancements of data science, machine learning has become a vital tool for improving decision making by using raw data and information as input. Significant results can be seen by using different machine learning techniques in various real-world domains, such as cybersecurity systems, engineering, healthcare, e-commerce, agriculture, etc. [1] [1] Yao, Z.; Yoon, H.-S.; Hong, Y.-K. Control of Hybrid Electric Vehicle Powertrain Using Offline-Online Hybrid Reinforcement Learning. Energies 2023, 16, 652. https://doi.org/10.3390/en16020652 |
» 猜你喜欢
遇见不省心的家人很难过
已经有16人回复
退学或坚持读
已经有25人回复
博士延得我,科研能力直往上蹿
已经有4人回复
免疫学博士有名额,速联系
已经有14人回复
面上基金申报没有其他的参与者成吗
已经有4人回复
多组分精馏求助
已经有6人回复
» 抢金币啦!回帖就可以得到:
南方医科大学中药学院 申请考核博士一名 (天然药化方向,天然产物分离经验优先)
+1/272
天津科技大学邓启良教授团队 招收2026年博士生
+1/80
非粮生物质能技术全国重点实验室合成生物学创新团队全球招聘博士/博士后
+1/74
深圳大学信息功能电子材料方向“申请-考核制”博士生招生
+2/70
香港科技大学计算物理及流体力学课题组招收全奖博士后及博士生(2026年9月入学)
+1/36
操作求助
+1/36
教育部重点实验室和清华大学某国家重点实验室,联合培养硕生、博生,并长期招博士后
+1/30
上海市“光探测材料与器件”工程技术研究中心(上海应用技术大学)招聘优秀研究人员
+1/28
意大利华人老师University of Padova-全额奖学金博士
+1/13
考博求助
+1/13
求资源
+1/12
西班牙巴塞罗那访学、博后、留学互动
+1/11
青岛大学招收少数民族【少干计划】生物与医药博士研究生
+1/9
四川大学华西医院沈百荣教授课题组科研助理招聘启事
+1/8
【博士招生】哈工大(深圳)智能学部机器人与先进制造学院 陆文杰老师课题组
+1/4
电子科技大学,电子科学与工程学院,杨青慧教授,2026年博士研究生招生
+1/3
华南理工大学宋波教授招聘材料和化学方向博士后(长期有效)
+1/2
【博士后/科研助理招聘-北京理工大学-集成电路与电子学院-国家杰青团队】
+1/2
上海理工大学“新能源材料”专业-赵斌教授招收申请考核制博士生【能源催化方向】
+1/2
澳科大诚招2026年秋季全奖博士研究生(药剂学/生物材料方向)
+1/1
★
yaoshunbo(金币+1): 谢谢参与
yaoshunbo(金币+1): 谢谢参与
|
本帖内容被屏蔽 |
2楼2023-02-28 14:28:16
|
本帖内容被屏蔽 |
3楼2023-02-28 14:30:10
简单回复
2023-02-28 15:27
回复
yaoshunbo(金币+1): 谢谢参与
tzynew5楼
2023-02-28 16:21
回复
yaoshunbo(金币+1): 谢谢参与
o 发自小木虫Android客户端
2023-02-28 19:29
回复













回复此楼