| 查看: 723 | 回复: 6 | |||
| 【有奖交流】积极回复本帖子,参与交流,就有机会分得作者 shawn2047 的 36 个金币 ,回帖就立即获得 1 个金币,每人有 1 次机会 | |||
[交流]
Special issue@Machine Learning Journal: Foundations of Data Science
|
|||
|
data science is a hot topic with an extensive scope, both in terms of theory and applications. machine learning forms one of its core foundational pillars. simultaneously, data science applications provide important challenges that can often be addressed only with innovative machine learning algorithms and methodologies. this special issue will highlight the latest development of the machine learning foundations of data science and on the synergy of data science and machine learning. we welcome new developments in statistics, mathematics, informatics and computing-driven machine learning for data science, including foundations, algorithms and models, systems, innovative applications and other research contributions. following the great success of the 2021 mlj special issue with dsaa'2021, this 2022 special issue will further capture the state-of-the-art machine learning advances for data science. accepted papers will be published in mlj and presented at a journal track of the 2022 ieee international conference on data science and advanced analytics (dsaa'2022) in shenzhen, october 2022. topics of interest we welcome original and well-grounded research papers on all aspects of foundations of data science including but not limited to the following topics: machine learning foundations for data science • auto-ml • information fusion from disparate sources • feature engineering, embedding, mining and representation • learning from network and graph data • learning from data with domain knowledge • reinforcement learning • non-iid learning, nonstationary, coupled and entangled learning • heterogeneous, mixed, multimodal, multi-view and multi-distributional learning • online, streaming, dynamic and real-time learning • causality and learning causal models • multi-instance, multi-label, multi-class and multi-target learning • semi-supervised and weakly supervised learning • representation learning of complex interactions, couplings, relations • deep learning theories and models • evaluation of data science systems • open domain/set learning emerging impactful machine learning applications • data preprocessing, manipulation and augmentation • autonomous learning and optimization systems • digital, social, economic and financial (finance, fintech, blockchains and cryptocurrencies) analytics • graph and network embedding and mining • machine learning for recommender systems, marketing, online and e-commerce • augmented reality, computer vision and image processing • risk, compliance, regulation, anomaly, debt, failure and crisis • cybersecurity and information disorder, misinformation/fake detection • human-centered and domain-driven data science and learning • privacy, ethics, transparency, accountability, responsibility, trust, reproducibility and retractability • fairness, explainability and algorithm bias • green and energy-efficient, scalable, cloud/distributed and parallel analytics and infrastructures • iot, smart city, smart home, telecommunications, 5g and mobile data science and learning • government and enterprise data science • transportation, manufacturing, procurement, and industry 4.0 • energy, smart grids and renewable energies • agricultural, environmental and spatio-temporal analytics and climate change contributions must contain new, unpublished, original and fundamental work relating to the machine learning journal's mission. all submissions will be reviewed using rigorous scientific criteria whereby the novelty of the contribution will be crucial. submission instructions submit manuscripts to: https://mach.edmgr.com. select this special issue as the article type. papers must be prepared in accordance with the journal guidelines: https://www.springer.com/journal/10994 all papers will be reviewed following standard reviewing procedures for the journal. key dates we will have a continuous submission/review process starting in oct. 2021. last paper submission deadline: 1 march 2022 paper acceptance: 1 june 2022 camera-ready: 15 june 2022 guest editors longbing cao, university of technology sydney, australia joão gama, university of porto, portugal nitesh chawla, university of notre dame, united states joshua huang, shenzhen university, china |
» 猜你喜欢
表哥与省会女结婚,父母去帮带孩子被省会女气回家生重病了
已经有12人回复
依托企业入选了国家启明计划青年人才。有无高校可以引进的。
已经有14人回复
江汉大学解明教授课题组招博士研究生/博士后
已经有3人回复
AI 太可怕了,写基金时,提出想法,直接生成的文字比自己想得深远,还有科学性
已经有11人回复
依托企业入选了国家启明计划青年人才。有无高校可以引进的。
已经有11人回复
» 抢金币啦!回帖就可以得到:
西湖大学2026年秋季入学物理学、光学、电子信息方向博士生有名额速来!!!
+2/226
贺电中定位于“积极作用”,是不是对基金委工作不够满意?
+1/88
陆军军医大学第二附属医院(新桥医院)冉茜课题组招聘科研人员
+1/83
哈工大医康学院材料模拟计算方向人才招聘
+1/77
山东征女友,坐标济南
+1/68
感谢小木虫的缘分
+1/38
中国农业大学安杰课题组招聘科研助理(表现优异者可提供读博机会)
+1/28
湖南大学袁达飞课题组招收第二批2026年9月入学的博士研究生一名
+1/25
香港中文大学(深圳)陈筱萌 课题组招生公告(博士 / 博后 / 硕士 / RA)
+1/14
香港城市大学范俊教授招博士生 2名 机器学习和仿真设计新的电池材料 仅限C9高校学生
+1/13
墨尔本大学(QS13)招全奖博士、CSC资助博士/访问学者(生物医学材料/器官芯片等方向)
+1/11
墨尔本大学(QS13)急招CSC博士(补齐全奖)/访问学者/博士后 (材料/生物医学/器官芯片等)
+1/9
全奖博士 英国利物浦大学 × 台湾清华大学 联合培养
+1/7
宁波诺丁汉大学招收26年秋/27年春固废协同转化与低碳冶金方向全奖博士生
+1/7
澳门理工大学 2026 Fall 奖学金博士招生 (AI药物与蛋白质设计,干湿结合)
+1/6
澳科大药学院诚招2026年秋季药剂学/生物材料硕士研究生(2026年3月5日报名截止)
+1/4
苏州大学国家级青年人才团队2026年博士招生(有机光电功能材料方向)
+1/4
太原理工大学集成电路学院院长团队招收2026年博士研究生
+1/2
西交利物浦大学(苏州)/刘雯老师课题组/招博士研究生
+1/2
西交利物浦大学/氮化镓基 CMOS 技术的物理驱动与人工智能增强方法/招博士研究生
+1/1
简单回复
tzynew2楼
2022-02-15 12:43
回复
shawn2047(金币+1): 谢谢参与
看i 发自小木虫Android客户端
bjdxyxy3楼
2022-02-15 12:47
回复
shawn2047(金币+1): 谢谢参与
。 发自小木虫Android客户端
nono20094楼
2022-02-15 12:48
回复
shawn2047(金币+1): 谢谢参与
`
bjdxyxy5楼
2022-02-17 22:18
回复
bjdxyxy6楼
2022-02-18 22:54
回复
超级老快7楼
2022-02-20 07:41
回复
shawn2047(金币+1): 谢谢参与
, 发自小木虫Android客户端













回复此楼