| 查看: 699 | 回复: 6 | |||
| 【有奖交流】积极回复本帖子,参与交流,就有机会分得作者 shawn2047 的 36 个金币 ,回帖就立即获得 1 个金币,每人有 1 次机会 | |||
[交流]
Special issue@Machine Learning Journal: Foundations of Data Science
|
|||
|
data science is a hot topic with an extensive scope, both in terms of theory and applications. machine learning forms one of its core foundational pillars. simultaneously, data science applications provide important challenges that can often be addressed only with innovative machine learning algorithms and methodologies. this special issue will highlight the latest development of the machine learning foundations of data science and on the synergy of data science and machine learning. we welcome new developments in statistics, mathematics, informatics and computing-driven machine learning for data science, including foundations, algorithms and models, systems, innovative applications and other research contributions. following the great success of the 2021 mlj special issue with dsaa'2021, this 2022 special issue will further capture the state-of-the-art machine learning advances for data science. accepted papers will be published in mlj and presented at a journal track of the 2022 ieee international conference on data science and advanced analytics (dsaa'2022) in shenzhen, october 2022. topics of interest we welcome original and well-grounded research papers on all aspects of foundations of data science including but not limited to the following topics: machine learning foundations for data science • auto-ml • information fusion from disparate sources • feature engineering, embedding, mining and representation • learning from network and graph data • learning from data with domain knowledge • reinforcement learning • non-iid learning, nonstationary, coupled and entangled learning • heterogeneous, mixed, multimodal, multi-view and multi-distributional learning • online, streaming, dynamic and real-time learning • causality and learning causal models • multi-instance, multi-label, multi-class and multi-target learning • semi-supervised and weakly supervised learning • representation learning of complex interactions, couplings, relations • deep learning theories and models • evaluation of data science systems • open domain/set learning emerging impactful machine learning applications • data preprocessing, manipulation and augmentation • autonomous learning and optimization systems • digital, social, economic and financial (finance, fintech, blockchains and cryptocurrencies) analytics • graph and network embedding and mining • machine learning for recommender systems, marketing, online and e-commerce • augmented reality, computer vision and image processing • risk, compliance, regulation, anomaly, debt, failure and crisis • cybersecurity and information disorder, misinformation/fake detection • human-centered and domain-driven data science and learning • privacy, ethics, transparency, accountability, responsibility, trust, reproducibility and retractability • fairness, explainability and algorithm bias • green and energy-efficient, scalable, cloud/distributed and parallel analytics and infrastructures • iot, smart city, smart home, telecommunications, 5g and mobile data science and learning • government and enterprise data science • transportation, manufacturing, procurement, and industry 4.0 • energy, smart grids and renewable energies • agricultural, environmental and spatio-temporal analytics and climate change contributions must contain new, unpublished, original and fundamental work relating to the machine learning journal's mission. all submissions will be reviewed using rigorous scientific criteria whereby the novelty of the contribution will be crucial. submission instructions submit manuscripts to: https://mach.edmgr.com. select this special issue as the article type. papers must be prepared in accordance with the journal guidelines: https://www.springer.com/journal/10994 all papers will be reviewed following standard reviewing procedures for the journal. key dates we will have a continuous submission/review process starting in oct. 2021. last paper submission deadline: 1 march 2022 paper acceptance: 1 june 2022 camera-ready: 15 june 2022 guest editors longbing cao, university of technology sydney, australia joão gama, university of porto, portugal nitesh chawla, university of notre dame, united states joshua huang, shenzhen university, china |
» 猜你喜欢
职称评审没过,求安慰
已经有41人回复
回收溶剂求助
已经有7人回复
硝基苯如何除去
已经有3人回复
A期刊撤稿
已经有4人回复
垃圾破二本职称评审标准
已经有17人回复
投稿Elsevier的Neoplasia杂志,到最后选publishing options时页面空白,不能完成投稿
已经有22人回复
EST投稿状态问题
已经有7人回复
毕业后当辅导员了,天天各种学生超烦
已经有4人回复
求助文献
已经有3人回复
三无产品还有机会吗
已经有6人回复
» 抢金币啦!回帖就可以得到:
祝福---好运连连---连连---
+4/280
DIY科研工具交流
+1/213
87 年东北小哥定居苏州/杭州/上海,诚寻携手余生的你
+1/159
【CSC招生】荷兰莱顿大学医学中心LKEB图像处理实验室 招收2026年CSC博士生多名
+1/79
在线寻缘,非诚勿扰
+1/59
玩个游戏吧
+2/46
北京科技大学机械工程学院谢贵久教授课题组2026年博士/硕士研究生招生
+2/36
上海交通大学机械与动力工程学院周宝文课题组招收2025年硕士研究生
+1/29
湖南师范大学杨亚辉/江浩团队招收电催化方向2026年博士生1名
+1/27
复旦大学彭慧胜院士团队 | 招聘有机合成方向博士后、博士生及科研助理
+1/24
SCI计算机
+1/17
SCI计算机相关论文
+1/9
加急!请问最近有没有投Current Research in Food Science 期刊的童鞋们?需要咨询
+1/8
浙江大学杨林课题组招聘药物化学与有机合成方向博士后
+1/8
中国地质大学(武汉)戴志高课题组诚招2026级硕博研究生
+1/5
中科院和北京工商大学招收2026博士/化学或生物背景
+1/5
中国科大化学与材料科学学院/苏州高研院刘东/熊宇杰教授团队诚聘催化方向博士后
+1/4
诚邀博士后合作研究人员
+1/4
中国科大化学与材料科学学院/苏州高研院刘东/熊宇杰教授团队诚聘博士后
+1/3
英国兰卡斯特大学(Lancaster University)大模型、计算机视觉PhD招生
+1/2
简单回复
tzynew2楼
2022-02-15 12:43
回复
shawn2047(金币+1): 谢谢参与
看i 发自小木虫Android客户端
bjdxyxy3楼
2022-02-15 12:47
回复
shawn2047(金币+1): 谢谢参与
。 发自小木虫Android客户端
nono20094楼
2022-02-15 12:48
回复
shawn2047(金币+1): 谢谢参与
`
bjdxyxy5楼
2022-02-17 22:18
回复
bjdxyxy6楼
2022-02-18 22:54
回复
超级老快7楼
2022-02-20 07:41
回复
shawn2047(金币+1): 谢谢参与
, 发自小木虫Android客户端













回复此楼