| 查看: 712 | 回复: 6 | |||
| 【有奖交流】积极回复本帖子,参与交流,就有机会分得作者 shawn2047 的 36 个金币 ,回帖就立即获得 1 个金币,每人有 1 次机会 | |||
[交流]
Special issue@Machine Learning Journal: Foundations of Data Science
|
|||
|
data science is a hot topic with an extensive scope, both in terms of theory and applications. machine learning forms one of its core foundational pillars. simultaneously, data science applications provide important challenges that can often be addressed only with innovative machine learning algorithms and methodologies. this special issue will highlight the latest development of the machine learning foundations of data science and on the synergy of data science and machine learning. we welcome new developments in statistics, mathematics, informatics and computing-driven machine learning for data science, including foundations, algorithms and models, systems, innovative applications and other research contributions. following the great success of the 2021 mlj special issue with dsaa'2021, this 2022 special issue will further capture the state-of-the-art machine learning advances for data science. accepted papers will be published in mlj and presented at a journal track of the 2022 ieee international conference on data science and advanced analytics (dsaa'2022) in shenzhen, october 2022. topics of interest we welcome original and well-grounded research papers on all aspects of foundations of data science including but not limited to the following topics: machine learning foundations for data science • auto-ml • information fusion from disparate sources • feature engineering, embedding, mining and representation • learning from network and graph data • learning from data with domain knowledge • reinforcement learning • non-iid learning, nonstationary, coupled and entangled learning • heterogeneous, mixed, multimodal, multi-view and multi-distributional learning • online, streaming, dynamic and real-time learning • causality and learning causal models • multi-instance, multi-label, multi-class and multi-target learning • semi-supervised and weakly supervised learning • representation learning of complex interactions, couplings, relations • deep learning theories and models • evaluation of data science systems • open domain/set learning emerging impactful machine learning applications • data preprocessing, manipulation and augmentation • autonomous learning and optimization systems • digital, social, economic and financial (finance, fintech, blockchains and cryptocurrencies) analytics • graph and network embedding and mining • machine learning for recommender systems, marketing, online and e-commerce • augmented reality, computer vision and image processing • risk, compliance, regulation, anomaly, debt, failure and crisis • cybersecurity and information disorder, misinformation/fake detection • human-centered and domain-driven data science and learning • privacy, ethics, transparency, accountability, responsibility, trust, reproducibility and retractability • fairness, explainability and algorithm bias • green and energy-efficient, scalable, cloud/distributed and parallel analytics and infrastructures • iot, smart city, smart home, telecommunications, 5g and mobile data science and learning • government and enterprise data science • transportation, manufacturing, procurement, and industry 4.0 • energy, smart grids and renewable energies • agricultural, environmental and spatio-temporal analytics and climate change contributions must contain new, unpublished, original and fundamental work relating to the machine learning journal's mission. all submissions will be reviewed using rigorous scientific criteria whereby the novelty of the contribution will be crucial. submission instructions submit manuscripts to: https://mach.edmgr.com. select this special issue as the article type. papers must be prepared in accordance with the journal guidelines: https://www.springer.com/journal/10994 all papers will be reviewed following standard reviewing procedures for the journal. key dates we will have a continuous submission/review process starting in oct. 2021. last paper submission deadline: 1 march 2022 paper acceptance: 1 june 2022 camera-ready: 15 june 2022 guest editors longbing cao, university of technology sydney, australia joão gama, university of porto, portugal nitesh chawla, university of notre dame, united states joshua huang, shenzhen university, china |
» 猜你喜欢
国自然申请面上模板最新2026版出了吗?
已经有7人回复
常年博士招收(双一流,工科)
已经有4人回复
推荐一本书
已经有10人回复
纳米粒子粒径的测量
已经有6人回复
溴的反应液脱色
已经有4人回复
参与限项
已经有5人回复
有没有人能给点建议
已经有5人回复
假如你的研究生提出不合理要求
已经有12人回复
萌生出自己或许不适合搞科研的想法,现在跑or等等看?
已经有4人回复
Materials Today Chemistry审稿周期
已经有4人回复
» 抢金币啦!回帖就可以得到:
坐标广州,诚征男友,大个子女生,非诚勿扰
+2/150
哈尔滨工业大学王东博课题组/中科院上海微系统所梁丽娟课题组招收2026年博士生1名
+1/89
原子层沉积(ALD)磁控溅射PECVD等微纳代工服务:18817872921
+1/82
供应EXAKT德国艾卡特3D打印材料分散用三辊研磨机80E PLUS
+1/81
26博士申请-药物化学方向
+1/78
上海科技大学物质科学与技术学院|王平鸾课题组长期招聘(博后/博硕/科研助理)
+1/71
湖南科技大学资安学院管青军教授2026年招收审核制博士生
+1/64
留学导师避雷——望传播
+1/56
时间的眼神
+1/56
香港科技大学显示与光电国家重点实验室招收量子点钙钛矿光电液晶显示方向博士生
+1/40
Win10系统Xshell窗口小、无法移动、不显示工具栏的一个解决办法
+1/38
北京化工大学化学工程学院杨琪教授 邱介山教授,招收储能电池方向博士研究生
+1/24
香港科技大学 招生 2026 Fall全奖博士 -- 机械/电子/材料/化学
+1/12
香港浸会大学化学系质谱分析测试中心招聘研究助理
+1/10
2026博士招生-上海大学先进耐火材料全国重点实验室-招收冶金工程博士研究生-1-2名
+1/8
天津理工大学材料学院陈民芳课题组诚招2026年秋季入学博士生
+1/8
【博士后/科研助理招聘-北京理工大学-集成电路与电子学院-国家杰青团队】
+1/4
博士后招聘(高薪40万+)
+1/4
液晶拓扑光子学博士招生(电子科技大学)
+1/1
科研党/导师看过来,强推这个自带“引文验真”的国产工具,改作业效率翻倍
+1/1
简单回复
tzynew2楼
2022-02-15 12:43
回复
shawn2047(金币+1): 谢谢参与
看i 发自小木虫Android客户端
bjdxyxy3楼
2022-02-15 12:47
回复
shawn2047(金币+1): 谢谢参与
。 发自小木虫Android客户端
nono20094楼
2022-02-15 12:48
回复
shawn2047(金币+1): 谢谢参与
`
bjdxyxy5楼
2022-02-17 22:18
回复
bjdxyxy6楼
2022-02-18 22:54
回复
超级老快7楼
2022-02-20 07:41
回复
shawn2047(金币+1): 谢谢参与
, 发自小木虫Android客户端












回复此楼