| 查看: 1543 | 回复: 6 | |||
| 【有奖交流】积极回复本帖子,参与交流,就有机会分得作者 201214760216 的 5 个金币 ,回帖就立即获得 1 个金币,每人有 1 次机会 | |||
[交流]
【电池材料】一种稳定且高容量的锂离子电池负极:由少量石墨烯包覆的Fe2O3
|
|||
|
本周文献精读 Wang, Yukun, Yang,等. A stable and high-capacity anode for lithium-ion battery: Fe2O3 wrapped by few layered graphene. 一段话了解全文 使用等离子球磨技术一步合成少层石墨烯纳米片包覆Fe2O3的复合材料(Fe2O3-FLG),该方法可有效降低Fe2O3的粒径并将石墨剥离成FLG。由于FLG纳米片的紧密包裹,该复合材料具有出良好的电化学性能,且有利于电极的导电性和完整性。20h处理后的样品300次循环后其容量为理论的88%。通过P-milling方法制备的Fe2O3-FLG复合材料有望作为高性能锂离子电池的负极材料。 Fe2O3-FLG复合材料的合成 P-milling中心电极与磨机之间施加22kV的电压,工作时充有0.1MPa的氩气。将10克Fe2O3(平均粒径1μm)粉末和石墨(平均粒径30μm)按8:2的重量比混合。为了研究球磨后石墨层的结构,在浓盐酸中腐蚀P-milling样品12小,然后在60℃下洗涤并干燥24小时,制备了去除Fe2O3的P-milling复合材料样品用于观察石墨层厚度。 结果与讨论 通过一步P-milling工艺合成由少数层状石墨烯纳米片包覆的Fe2O3颗粒。在研磨过程中,氩原子在22kV的电场中被电离。氩等离子体被加速并粉碎石墨,将动能以热量的形式传递给石墨,从而削弱了石墨烯层之间的范德华键。前10小时FLG纳米片被剪切力剥离。延长至20小时时,FLG的量不再增加,在研磨球的挤压下,FLG纳米片牢固地包覆Fe2O3纳米颗粒。 通过SEM研究P-milling过程中的结构演变。P5中厚大片状物为石墨层,颗粒为Fe2O3。当研磨时间延长至20小时时,可以明显观察到石墨层变得薄而透明,紧紧包裹在Fe2O3颗粒周围。进行TEM观察FLG纳米片厚5-8nm,相当于15-25层石墨烯(图1e的插图)。通过在浓盐酸中去除Fe2O3颗粒来制备裸FLG纳米片,空心壳意味着在去除之前Fe2O3颗粒被包裹在里面 D波段和G波段的相对强度比(ID/IG)在原始石墨中为0.47,而对于P20则增加到2.28。ID/IG的增加表明在P-milling过程中完美石墨的结构崩溃和向FLG的转变,这与SEM和TEM结果非常一致。 XRD显示P-milling样品中Fe2O3的(104)和(110)峰展宽,P5、P10和P20中Fe2O3的平均晶体尺寸分别为51、35和28nm,Fe2O3的显着细化。原始石墨样品的强(002)衍射峰在P5处减弱,在P10和P20处变得不明显,表明石墨层减少。 FLG纳米片的热稳定性受石墨烯层数的显着影响。在TG曲线碳的氧化温度随着P-milling时间的增加而降低,这表明FLG纳米片的层数随着研磨时间的增加而减少。P20(504℃)的氧化温度与P10(522℃)的非常接近,表明FLG纳米片的层数在前10小时研磨中急剧减少,然后逐渐达到稳定状态。 随着P-milling时间的延长,可以实现FLG更紧密有效地包覆Fe2O3。该结构有利于所得Fe2O3-FLG纳米复合材料的电化学性能。P20的CV循环中,第2次和第5次循环中重叠的CV曲线表明Fe3+和Fe0之间的转化反应具有良好的可逆性。P20的初始放电容量为916mAh·g-1,库仑效率为79%,其可逆容量(729 mAh·g-1)等于P20理论容量(880.0 mAh·g-1,考虑Fe2O3和石墨的重量比)的82.8%。原始Fe2O3的可逆容量在50次循环中迅速衰减至仅200mAh·g-1。随着石墨的引入,P10和P20的可逆容量在50次循环后增加到约700 mAh·g-1。然而,200次循环后,P10仅保留370 mAh·g-1,而P20在300次循环后达到758 mAh·g-1。P20改善的循环性能更优。同时图3c中,P20也表现出良好的倍率性能。 上述结果表明,通过20hP-milling制备的Fe2O3-FLG具有优异的电化学性能。储能性能的提高可归因于以下几个方面:(1)Fe2O3微晶尺寸的减小引入了更多的晶界、更短的路径和更大的活性表面积,这对锂离子的扩散和动力学非常有利氧化还原反应。(2)FLG纳米片具有导电性,为电子传输提供了路径,涂层有利于锂的储存。(3)对于P-milling电极,EIS中的半圆直径较小(图3d)表明P5的接触和电荷转移电阻低于裸Fe2O3电极。(4)包裹在Fe2O3纳米颗粒周围的FLG纳米片作为基质,抑制充放电过程中的体积变化。相反,不均匀的涂层如P10(图4c)导致部分聚集和粉化,最终导致电极材料的剧烈剥离。 结论 具有高容量和稳定性的FLG纳米片包裹的Fe2O3已通过简便且大规模的一步P-milling方法成功合成。P-milling可有效减小Fe2O3的粒径,将石墨剥离成FLG,并形成Fe2O3-FLG与FLG包裹Fe2O3的复合材料。由于FLG纳米片的紧密包裹,P20在P-milling样品中表现出最好的电化学性能,这有利于电极优良的导电性和完整性。300次循环后,P20在200Ma·g-1下仍保持758mAh·g-1的可逆容量,相当于其理论容量的88%。凭借优异的电化学性能,通过P-milling制备的Fe2O3-FLG复合材料有望作为高性能锂离子电池的负极材料。 |
» 猜你喜欢
中国科大电池方向任晓迪课题组招收2026级博士生-电解液/电池安全性/人工智能方向
已经有21人回复
26年秋季博士申请
已经有0人回复
分析化学论文润色/翻译怎么收费?
已经有279人回复
推荐给英语教学者的一本单词书《金鱼单词讲义:从26个拉丁字母到106万个英语单词》
已经有59人回复
推荐给教师的一本单词书《金鱼单词讲义:从26个拉丁字母到106万个英语单词》
已经有32人回复
核磁分析软件MestReNova打开文件时报错
已经有0人回复
在职博后不能申请博后基金了,那么在职博后意义何在?
已经有2人回复
青岛大学化学化工学院分子测量学研究院2026年招收博士研究生
已经有0人回复
香港科技大学(广州)诚招电催化方向博士生(2026秋入学)
已经有0人回复
» 本主题相关商家推荐: (我也要在这里推广)
» 抢金币啦!回帖就可以得到:
北京理工大学郑长松教授课题组诚招2026年秋季博士/硕士研究生
+3/365
16年了,来看看大家
+1/198
双一流南京医科大学招计算机、AI、统计、生物信息等方向26年9月入学博士
+1/178
原子层沉积(ALD)磁控溅射PECVD等微纳代工服务:18817872921
+1/89
科瑞赛生物内皮细胞培养基试用装限时大放送,助力你的实验高效进阶!
+1/84
湖南师范大学医工交叉科研团队招收计算机博士生
+1/80
上海大学昝鹏教授、军事医学研究院伯晓晨研究员/倪铭副研究员 课题组招聘博士生
+1/78
成都理工大学全国重点实验室公开诚聘绿色有机合成方向联培生及科研助理
+1/76
希望你在这里
+1/62
坐标济南,山东农科院招 有机合成 or 药物化学 联培硕士研究生
+1/37
西北工业大学无人飞行器技术全国重点实验室拟招收电机/自动化方向博士1~2名
+1/30
厦门大学航空航天学院智能制造课题组招2026年申请审核制博士生1-2名
+1/30
福建师范大学柔性电子学院招收2026年博士(储能材料与柔性电子器件)
+2/18
香港中文大学(深圳)下一代半导体激光器概念验证中心(筹)招聘工程师
+1/8
中科院深圳理工大学网络课题组招聘博后/RA/实习生
+1/7
2026 博士自荐-机器人机构学方向
+1/7
北京工业大学材料学院吴玉锋教授、王长龙研究员招收博士研究生
+1/6
求博导收留
+1/5
浙江大学傅杰团队(杰青)高薪招聘博士后
+1/5
中国矿业大学黄赳课题组联合中国科学院南京土壤研究所朱晓芳研究员诚聘博士后
+1/1
4楼2021-11-05 10:47:31
7楼2021-12-21 13:36:19
简单回复
tzynew2楼
2021-11-05 10:23
回复
201214760216(金币+1): 谢谢参与
i 发自小木虫Android客户端
bjdxyxy3楼
2021-11-05 10:26
回复
201214760216(金币+1): 谢谢参与
? 发自小木虫Android客户端
nono20095楼
2021-11-05 12:16
回复
201214760216(金币+1): 谢谢参与
`
2021-11-05 21:34
回复
201214760216(金币+1): 谢谢参与












回复此楼

