24小时热门版块排行榜    

CyRhmU.jpeg
查看: 398  |  回复: 1
本帖产生 1 个 ,点击这里进行查看

aygxy_lhc

铁虫 (正式写手)

[求助] 请帮忙看一下论文是否被SCI检索了,谢谢!

作者:
Huichao Lv, Dayong Tian
文题:
Designing and optimizing a parallel neural network model for predicting the solubility of diosgenin in n-alkanols
期刊名:
Chinese Journal of Chemical Engineering
期刊年份:
2021
卷(期),起止页码:
29:288-294.
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

baiyuefei

版主 (文学泰斗)

风雪

优秀版主优秀版主优秀版主文献杰出贡献优秀版主优秀版主优秀版主文献杰出贡献优秀版主优秀版主优秀版主优秀版主文献杰出贡献优秀版主优秀版主优秀版主优秀版主优秀版主优秀版主

【答案】应助回帖

★ ★ ★ ★ ★ ★ ★ ★ ★ ★
感谢参与,应助指数 +1
aygxy_lhc: 金币+10, ★★★★★最佳答案, 谢谢了! 2021-04-29 17:03:32
sunshan4379: LS-EPI+1, 感谢应助! 2021-05-01 10:47:00
Designing and optimizing a parallel neural networkmodel for predicting the solubility of diosgenin in n-alkanols
作者:Lv, HC (Lv, Huichao)[ 1 ] ; Tian, DY (Tian, Dayong)[ 1 ]

CHINESE JOURNAL OF CHEMICAL ENGINEERING

卷: 29 期: 1 页: 288-294
DOI: 10.1016/j.cjche.2020.09.009

出版年: JAN 2021

文献类型:Article

摘要
Accurate estimation of the solubility of a chemical compound is an important issue formany industrial processes. To overcome the defects of some thermodynamic models and simple correlations, a parallel neural network (PNN) model was conceived and optimized to predict the solubility of diosgenin in seven n-alkanols (C-1-C-7). The linear regression analysis of the parity plots indicates that the PNN model can give more accurate descriptions of the solubility of diosgenin than the ordinary neural network (ONN) model. The comparison of the average root mean square deviation (RMSD) shows that the suggested model has a slight advantage over the thermodynamic NRTL model in terms of the calculating precision. Moreover, the PNN model can reflect the effects of the temperature and the chain length of the alcohol solvent on the solution behavior of diosgenin correctly and can estimate its solubility in the n-alkanols with more carbon atoms. (C) 2020 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved.

关键词
作者关键词:Solubility; Diosgenin; Parallel neural network model; NRTL model

作者信息
通讯作者地址:

Anyang Inst Technol, Sch Chem & Environm Engn, Anyang 455000, Peoples R China.
通讯作者地址: Lv, HC (通讯作者)

              Anyang Inst Technol, Sch Chem & Environm Engn, Anyang 455000, Peoples R China.
地址:

              [ 1 ]‎ Anyang Inst Technol, Sch Chem & Environm Engn, Anyang 455000, Peoples R China
电子邮件地址:20160471@ayit.edu.cn

基金资助致谢
基金资助机构        授权号
Science and Technology Plan Project of Henan Province

192102310232
查看基金资助信息   
出版商
CHEMICAL INDUSTRY PRESS CO LTD, NO 13, QINGNIANHU SOUTH ST, DONGCHENG DIST, BEIJING 100011, PEOPLES R CHINA

类别 / 分类
研究方向:Engineering

Web of Science 类别:Engineering, Chemical

文献信息
语言:English

入藏号: WOS:000636564100033

ISSN: 1004-9541

eISSN: 2210-321X

其他信息
IDS 号: RH9XB

Web of Science 核心合集中的 "引用的参考文献": 29

Web of Science 核心合集中的 "被引频次": 0

查看较少数据字段
2楼2021-04-29 14:54:22
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 aygxy_lhc 的主题更新
信息提示
请填处理意见