| 查看: 1341 | 回复: 7 | |||
| 【悬赏金币】回答本帖问题,作者问天卖饼2将赠送您 100 个金币 | |||
[求助]
振荡的波函数如何求积分 已有1人参与
|
|||
|
我用薛定谔方程分别求出199个phi和199个psi,现在的问题是phi*psi后求积分求不出来,代码如图所示。我尝试了很多种method都不行。求助广大强大的网友,该怎么求积分呢? @月只蓝 @月只蓝 @beefly 发自小木虫Android客户端 |
» 猜你喜欢
基元I理论下三大核心空间现象精准推导与细节解析
已经有0人回复
基于基元 I 统一理论的反重力理论推导
已经有0人回复
物理学I论文润色/翻译怎么收费?
已经有160人回复
基于基元I统一理论的量子力学本源推导
已经有1人回复
推荐一款可以AI辅助写作的Latex编辑器SmartLatexEditor,超级好用,AI润色,全免费
已经有20人回复
【EI|Scopus 双检索】第六届智能机器人系统国际会议(ISoIRS 2026)
已经有0人回复
2026年第四届电动车与车辆工程国际会议(CEVVE 2026)
已经有0人回复
2楼2020-11-12 10:09:41
3楼2020-11-12 10:13:41
4楼2020-11-12 10:17:43
|
L = 1000*10^-10; F = 10^7; m = 0.0665*9.1*10^-31; mhole = 0.34*9.1*10^-31; e = 1.6*10^-19; \[HBar] = 1.05*10^-34; Ne = 199;eqn1 = (-(\[HBar]^2/(2 m))* (\[Phi]^\[Prime]\[Prime])[x] + e*F*x*\[Phi][x]);{phivals, phifuns} = NDEigensystem[{eqn1, DirichletCondition[\[Phi][x] == 0, x \[GreaterSlantEqual] L/2 || x <= -L/2]}, \[Phi][x], {x, -L/2, L/2}, Ne, Method -> {"SpatialDiscretization" -> {"FiniteElement", \ {"MeshOptions" -> {MaxCellMeasure -> 10^-9}}}}];eqn2 = (-(\[HBar]^2/(2 mhole))* (\[Psi]^\[Prime]\[Prime])[x] - e*F*x*\[Psi][x]);{psivals, psifuns} = NDEigensystem[{eqn2, DirichletCondition[[Psi][x] == 0, x [GreaterSlantEqual] L/2 || x <= -L/2]}, [Psi][x], {x, -L/2, L/2}, Ne, Method -> {"SpatialDiscretization" -> {"FiniteElement", \ {"MeshOptions" -> {MaxCellMeasure -> 10^-9}}}}];Etable = Table[(psivals[] + phivals[[j]])/(1.6*10^-22), {i, Ne}, {j, Ne}];Itable = Table[ Abs[NIntegrate[psifuns[]*phifuns[[j]], {x, -L/2, L/2}, Method -> {"ExtrapolatingOscillatory"}]], {i, Ne}, {j, Ne}]; |
5楼2020-11-12 11:06:59
|
L = 1000*10^-10; F = 10^7; m = 0.0665*9.1*10^-31; mhole = 0.34*9.1*10^-31; e = 1.6*10^-19; \[HBar] = 1.05*10^-34; Ne = 199;eqn1 = (-(\[HBar]^2/(2 m))* (\[Phi]^\[Prime]\[Prime])[x] + e*F*x*\[Phi][x]);{phivals, phifuns} = NDEigensystem[{eqn1, DirichletCondition[\[Phi][x] == 0, x \[GreaterSlantEqual] L/2 || x <= -L/2]}, \[Phi][x], {x, -L/2, L/2}, Ne, Method -> {"SpatialDiscretization" -> {"FiniteElement", \ {"MeshOptions" -> {MaxCellMeasure -> 10^-9}}}}];eqn2 = (-(\[HBar]^2/(2 mhole))* (\[Psi]^\[Prime]\[Prime])[x] - e*F*x*\[Psi][x]);{psivals, psifuns} = NDEigensystem[{eqn2, DirichletCondition[[Psi][x] == 0, x [GreaterSlantEqual] L/2 || x <= -L/2]}, [Psi][x], {x, -L/2, L/2}, Ne, Method -> {"SpatialDiscretization" -> {"FiniteElement", \ {"MeshOptions" -> {MaxCellMeasure -> 10^-9}}}}];Etable = Table[(psivals + phivals[[j]])/(1.6*10^-22), {i, Ne}, {j, Ne}];Itable = Table[ Abs[NIntegrate[psifuns[]*phifuns[[j]], {x, -L/2, L/2}, Method -> {"ExtrapolatingOscillatory"}]], {i, Ne}, {j, Ne}]; |
6楼2020-11-12 11:47:37
|
L = 1000*10^-10; F = 10^7; m = 0.0665*9.1*10^-31; mhole = 0.34*9.1*10^-31; e = 1.6*10^-19; [HBar] = 1.05*10^-34; Ne = 199; eqn1 = (-(\[HBar]^2/(2 m))* (\[Phi]^\[Prime]\[Prime])[x] + e*F*x*\[Phi][x]); eqn2 = (-(\[HBar]^2/(2 mhole))* (\[Psi]^\[Prime]\[Prime])[x] - e*F*x*\[Psi][x]) {phivals, phifuns} = NDEigensystem[{eqn1, DirichletCondition[\[Phi][x] == 0, x \[GreaterSlantEqual] L/2 || x <= -L/2]}, \[Phi][x], {x, -L/2, L/2}, Ne, Method -> {"SpatialDiscretization" ->{"FiniteElement", {"MeshOptions" -> {MaxCellMeasure -> 10^-9}}}}]; {psivals, psifuns} = NDEigensystem[{eqn2, DirichletCondition[\[Psi][x] == 0, x \[GreaterSlantEqual] L/2 || x <= -L/2]}, \[Psi][x], {x, -L/2, L/2}, Ne, Method -> {"SpatialDiscretization" -> "FiniteElement", \{"MeshOptions" -> {MaxCellMeasure -> 10^-9}}}}]; |
7楼2020-11-12 14:29:12
独孤神宇
版主 (知名作家)
- 应助: 490 (硕士)
- 贵宾: 0.008
- 金币: 31016.3
- 散金: 802
- 红花: 122
- 沙发: 1
- 帖子: 5600
- 在线: 856.5小时
- 虫号: 3522474
- 注册: 2014-11-06
- 性别: GG
- 专业: 机械动力学
- 管辖: 计算模拟

8楼2020-11-13 14:34:11













回复此楼