| 查看: 8269 | 回复: 112 | |||||
| 【有奖交流】积极回复本帖子,参与交流,就有机会分得作者 sig102657 的 776 个金币 ,回帖就立即获得 2 个金币,每人有 1 次机会 | |||||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||||
[交流]
Call for Papers (IEEE Transactions on Neural Networks and Learning Systems Speci
|
|||||
IEEE Transactions on Neural Networks and Learning Systems Call for Papers Special Issue on Effective Feature Fusion in Deep Neural Networks https://cis.ieee.org/images/file ... efdnn_tnnls_cfp.pdf Submission deadline: nov. 30, 2020. first notification: feb. 1, 2021 ================================================================================ Due to the powerful ability of learning hierarchical features, Deep Deural Detworks (DNNs) have achieved great success in many intelligent perception systems with image data and/or point cloud data and have been widely used in developing robust automotive driving, visual surveillance, and human-machine interaction. For example, state-of-the-art performances in image classification, object detection, semantic segmentation, and cross-modal perception are obtained by different kinds of DNNs. To a great degree, the success of DNNs stems from properly fusing the hierarchical features which are diverse in semantic-levels, resolutions/scales, roles, sensitivity, and so on. Representative fusion schemes include dense connection, residual learning, skip connection, top-down feature pyramid, and attention-based feature weighting. However, there is a large room for developing more effective feature fusion to improve the performance of dnns so that machine perception can approach or exceed human perception. This special issue focuses on investigating problems and phenomena of existing feature fusion schemes, tackling the challenges of semantic gap and perception of hard objects and scenarios, and providing new ideas, theories, solutions, and insights for effective feature fusion in DNNs for image and/or point cloud data. The topics of interest include, but are not limited to: n Feature fusion for effective backbones and prediction n Feature fusion for image/video data using deep neural networks n Feature fusion for point cloud data using deep neural networks n Adaptive feature fusion networks n Criteria and loss functions for feature fusion in deep neural networks n Feature fusion for detecting/recognizing small objects n Feature fusion for detecting/recognizing occluded objects n Attention-based feature fusion in deep neural networks n Visualization and interpretation of feature fusion n Feature fusion for semantic segmentation n Feature fusion for object tracking n Feature fusion for cross-modal/domain learning n Feature fusion for 3D object detection n New feature fusion problems and applications IMPORTANT DATAS n November 30, 2020: Deadline for manuscript submission n February 1, 2021: Reviewer’s comments to authors n April 1, 2021: Submission deadline of revisions n June 1, 2021: Final decisions to authors n July 1, 2021: Publication date (Early access) GUEST EDITORS Yanwei Pang, Tianjin University, China, pyw@tju.edu.cn Fahad Shahbaz Khan, Inception Institute of Artificial Intelligence, UAE, fahad.khan@liu.se Xin Lu, Adobe Inc., USA, xinl@adobe.com Fabio Cuzzolin, Oxford Brookes University, UK, fabio.cuzzolin@brookes.ac.uk SUBMISSION INSTRUCTIONS n Read the Information for Authors at https://cis.ieee.org/tnnls. n Submit your manuscript at the TNNLS webpage (https://mc.manuscriptcentral.com/tnnls) and follow the submission procedure. Please, clearly indicate on the first page of the manuscript and in the cover letter that the manuscript is submitted to this special issue. Send an email to the leading editor Prof. Yanwei Pang (pyw@tju.edu.cn) with subject “TNNLS special issue submission” to notify your submission. n Early submissions are welcome. We will start the review process as soon as we receive your contributions. |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : TNNLS_CFP.pdf
2020-04-11 12:34:43, 220.23 K
» 猜你喜欢
论文终于录用啦!满足毕业条件了
已经有17人回复
不自信的我
已经有5人回复
磺酰氟产物,毕不了业了!
已经有4人回复
投稿Elsevier的杂志(返修),总是在选择OA和subscription界面被踢皮球
已经有8人回复
» 抢金币啦!回帖就可以得到:
求一个访问学者邀请函,非常非常感谢
+1/694
武汉纺织大学电子与电气工程学院------院长团队招聘光电、材料类博士,博士后
+1/491
16年了,来看看大家
+1/199
限广州,征女友
+2/94
澳门大学智慧城市物联网国重“结构智能感知、健康监测与无损检测”研究方向博士后招聘
+1/79
澳门大学智慧城市物联网国重“结构智能感知、健康监测与无损检测”研究方向博士后招聘
+1/79
昆明理工大学冶能院离子液体冶金课题组招收博士
+1/58
香港理工大学-应用生物与化学科技学系 招收2025年博士研究生
+2/50
急招碳材料相关特任研究人员/博士后/科研助理/26级博士和硕士
+1/43
中国科学院大连化学物理研究所DNL0902研究组招聘博士后和职工
+1/32
北京林业大学木质素高值化利用创新团队招收2026年入学博士生
+1/30
南科大薛亚辉课题组诚聘离子输运、低维器件、原子力显微镜等方向“快响行动”博士生
+1/26
福建师范大学柔性电子学院招收2026年博士(储能材料与柔性电子器件)
+2/26
中科院深圳理工大学网络课题组招聘博后/RA/实习生
+1/12
代算!材料学理论计算
+1/5
土木、交通工程专业博士后站有吗?(无博士毕业3年要求+可接受兼职博后)
+1/5
废旧塑料热解油采购
+1/4
中国科学院苏州纳米所院士团队博士后岗位招聘
+1/2
国家级人才课题组招收生物学相关专业2026年入学博士生
+1/2
👉划重点!硼替佐米药物研发质控必备
+1/1
★
sig102657(金币+2): 谢谢参与
sig102657(金币+2): 谢谢参与
|
本帖内容被屏蔽 |
21楼2020-04-14 23:04:46
3楼2020-04-11 12:48:50
★
sig102657(金币+2): 谢谢参与
sig102657(金币+2): 谢谢参与
|
本帖内容被屏蔽 |
11楼2020-04-14 23:04:46
★
sig102657(金币+2): 谢谢参与
sig102657(金币+2): 谢谢参与
|
本帖内容被屏蔽 |
12楼2020-04-14 23:04:46
简单回复
tzynew2楼
2020-04-11 12:35
回复
sig102657(金币+2): 谢谢参与
9 发自小木虫Android客户端
qian19504楼
2020-04-11 12:54
回复
sig102657(金币+2): 谢谢参与
, 发自小木虫Android客户端
待鹰归来5楼
2020-04-11 15:06
回复
sig102657(金币+2): 谢谢参与
, 发自小木虫Android客户端
greenfly6楼
2020-04-11 15:15
回复
sig102657(金币+2): 谢谢参与
e 发自小木虫IOS客户端
nono20098楼
2020-04-11 20:49
回复
sig102657(金币+2): 谢谢参与
。 发自小木虫Android客户端
2020-04-13 07:25
回复
adsl987610楼
2020-04-13 19:05
回复
sig102657(金币+2): 谢谢参与
哦 发自小木虫Android客户端







回复此楼