| 查看: 8221 | 回复: 112 | |||||
| 【有奖交流】积极回复本帖子,参与交流,就有机会分得作者 sig102657 的 776 个金币 ,回帖就立即获得 2 个金币,每人有 1 次机会 | |||||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||||
[交流]
Call for Papers (IEEE Transactions on Neural Networks and Learning Systems Speci
|
|||||
IEEE Transactions on Neural Networks and Learning Systems Call for Papers Special Issue on Effective Feature Fusion in Deep Neural Networks https://cis.ieee.org/images/file ... efdnn_tnnls_cfp.pdf Submission deadline: nov. 30, 2020. first notification: feb. 1, 2021 ================================================================================ Due to the powerful ability of learning hierarchical features, Deep Deural Detworks (DNNs) have achieved great success in many intelligent perception systems with image data and/or point cloud data and have been widely used in developing robust automotive driving, visual surveillance, and human-machine interaction. For example, state-of-the-art performances in image classification, object detection, semantic segmentation, and cross-modal perception are obtained by different kinds of DNNs. To a great degree, the success of DNNs stems from properly fusing the hierarchical features which are diverse in semantic-levels, resolutions/scales, roles, sensitivity, and so on. Representative fusion schemes include dense connection, residual learning, skip connection, top-down feature pyramid, and attention-based feature weighting. However, there is a large room for developing more effective feature fusion to improve the performance of dnns so that machine perception can approach or exceed human perception. This special issue focuses on investigating problems and phenomena of existing feature fusion schemes, tackling the challenges of semantic gap and perception of hard objects and scenarios, and providing new ideas, theories, solutions, and insights for effective feature fusion in DNNs for image and/or point cloud data. The topics of interest include, but are not limited to: n Feature fusion for effective backbones and prediction n Feature fusion for image/video data using deep neural networks n Feature fusion for point cloud data using deep neural networks n Adaptive feature fusion networks n Criteria and loss functions for feature fusion in deep neural networks n Feature fusion for detecting/recognizing small objects n Feature fusion for detecting/recognizing occluded objects n Attention-based feature fusion in deep neural networks n Visualization and interpretation of feature fusion n Feature fusion for semantic segmentation n Feature fusion for object tracking n Feature fusion for cross-modal/domain learning n Feature fusion for 3D object detection n New feature fusion problems and applications IMPORTANT DATAS n November 30, 2020: Deadline for manuscript submission n February 1, 2021: Reviewer’s comments to authors n April 1, 2021: Submission deadline of revisions n June 1, 2021: Final decisions to authors n July 1, 2021: Publication date (Early access) GUEST EDITORS Yanwei Pang, Tianjin University, China, pyw@tju.edu.cn Fahad Shahbaz Khan, Inception Institute of Artificial Intelligence, UAE, fahad.khan@liu.se Xin Lu, Adobe Inc., USA, xinl@adobe.com Fabio Cuzzolin, Oxford Brookes University, UK, fabio.cuzzolin@brookes.ac.uk SUBMISSION INSTRUCTIONS n Read the Information for Authors at https://cis.ieee.org/tnnls. n Submit your manuscript at the TNNLS webpage (https://mc.manuscriptcentral.com/tnnls) and follow the submission procedure. Please, clearly indicate on the first page of the manuscript and in the cover letter that the manuscript is submitted to this special issue. Send an email to the leading editor Prof. Yanwei Pang (pyw@tju.edu.cn) with subject “TNNLS special issue submission” to notify your submission. n Early submissions are welcome. We will start the review process as soon as we receive your contributions. |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : TNNLS_CFP.pdf
2020-04-11 12:34:43, 220.23 K
» 猜你喜欢
自荐读博
已经有9人回复
投稿Elsevier的杂志(返修),总是在选择OA和subscription界面被踢皮球
已经有8人回复
自然科学基金委宣布启动申请书“瘦身提质”行动
已经有4人回复
求个博导看看
已经有18人回复
» 抢金币啦!回帖就可以得到:
双一流南京医科大学招计算机、AI、统计、生物信息等方向26年9月入学博士
+1/190
江汉大学招聘AI for Materials/电解液/锂金属/全固态电池等方面的博士或者博士后
+1/178
中国科学院大学纳米科学与工程学院唐智勇(院长)-张银团队招聘启事
+1/175
澳门大学智慧城市物联网国重“结构智能感知、健康监测与无损检测”研究方向博士后招聘
+1/86
香港理工大学-应用生物与化学科技学系 招收2025年博士研究生
+2/56
急招碳材料相关特任研究人员/博士后/科研助理/26级博士和硕士
+1/47
中国科学院深海所 招收2026秋入学博士生1名 申请-考核制
+1/44
南科大薛亚辉课题组诚聘离子输运、低维器件、原子力显微镜等方向“快响行动”博士生
+1/44
2026博士申请——有机化学\计算化学\药物化学方向
+1/44
华中科技大学龚江研究员课题组诚招博士研究生、科研助理和博士后
+2/40
南科大夏海平院士-深大张平玉课题组联合招聘博士后
+1/24
青岛大学 丁欣 课题组 招收2026秋化学博士1名
+1/8
2026年中科院化学所优青 程靓团队招收有机化学、生物化学背景的博士研究生
+1/8
代算!材料学理论计算
+1/6
废旧塑料热解油采购
+1/6
求博导收留
+1/5
中国矿业大学黄赳课题组联合中国科学院南京土壤研究所朱晓芳研究员诚聘博士后
+1/3
深容SCI智能体四大模块:Method, Introduction, Discussion, Abstract
+1/3
湖南大学机械与运载工程学院赵岩副教授课题组招生2026级普通博士生1名
+1/2
求《化工原理》第四版 柴诚敬、贾绍义 电子教材及课件
+1/1
★
sig102657(金币+2): 谢谢参与
sig102657(金币+2): 谢谢参与
|
本帖内容被屏蔽 |
12楼2020-04-14 23:04:46
3楼2020-04-11 12:48:50
★
sig102657(金币+2): 谢谢参与
sig102657(金币+2): 谢谢参与
|
本帖内容被屏蔽 |
11楼2020-04-14 23:04:46
★
sig102657(金币+2): 谢谢参与
sig102657(金币+2): 谢谢参与
|
本帖内容被屏蔽 |
13楼2020-04-14 23:04:46
简单回复
tzynew2楼
2020-04-11 12:35
回复
sig102657(金币+2): 谢谢参与
9 发自小木虫Android客户端
qian19504楼
2020-04-11 12:54
回复
sig102657(金币+2): 谢谢参与
, 发自小木虫Android客户端
待鹰归来5楼
2020-04-11 15:06
回复
sig102657(金币+2): 谢谢参与
, 发自小木虫Android客户端
greenfly6楼
2020-04-11 15:15
回复
sig102657(金币+2): 谢谢参与
e 发自小木虫IOS客户端
nono20098楼
2020-04-11 20:49
回复
sig102657(金币+2): 谢谢参与
。 发自小木虫Android客户端
2020-04-13 07:25
回复
adsl987610楼
2020-04-13 19:05
回复
sig102657(金币+2): 谢谢参与
哦 发自小木虫Android客户端







回复此楼