| 查看: 8237 | 回复: 112 | |||||
| 【有奖交流】积极回复本帖子,参与交流,就有机会分得作者 sig102657 的 776 个金币 ,回帖就立即获得 2 个金币,每人有 1 次机会 | |||||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||||
[交流]
Call for Papers (IEEE Transactions on Neural Networks and Learning Systems Speci
|
|||||
IEEE Transactions on Neural Networks and Learning Systems Call for Papers Special Issue on Effective Feature Fusion in Deep Neural Networks https://cis.ieee.org/images/file ... efdnn_tnnls_cfp.pdf Submission deadline: nov. 30, 2020. first notification: feb. 1, 2021 ================================================================================ Due to the powerful ability of learning hierarchical features, Deep Deural Detworks (DNNs) have achieved great success in many intelligent perception systems with image data and/or point cloud data and have been widely used in developing robust automotive driving, visual surveillance, and human-machine interaction. For example, state-of-the-art performances in image classification, object detection, semantic segmentation, and cross-modal perception are obtained by different kinds of DNNs. To a great degree, the success of DNNs stems from properly fusing the hierarchical features which are diverse in semantic-levels, resolutions/scales, roles, sensitivity, and so on. Representative fusion schemes include dense connection, residual learning, skip connection, top-down feature pyramid, and attention-based feature weighting. However, there is a large room for developing more effective feature fusion to improve the performance of dnns so that machine perception can approach or exceed human perception. This special issue focuses on investigating problems and phenomena of existing feature fusion schemes, tackling the challenges of semantic gap and perception of hard objects and scenarios, and providing new ideas, theories, solutions, and insights for effective feature fusion in DNNs for image and/or point cloud data. The topics of interest include, but are not limited to: n Feature fusion for effective backbones and prediction n Feature fusion for image/video data using deep neural networks n Feature fusion for point cloud data using deep neural networks n Adaptive feature fusion networks n Criteria and loss functions for feature fusion in deep neural networks n Feature fusion for detecting/recognizing small objects n Feature fusion for detecting/recognizing occluded objects n Attention-based feature fusion in deep neural networks n Visualization and interpretation of feature fusion n Feature fusion for semantic segmentation n Feature fusion for object tracking n Feature fusion for cross-modal/domain learning n Feature fusion for 3D object detection n New feature fusion problems and applications IMPORTANT DATAS n November 30, 2020: Deadline for manuscript submission n February 1, 2021: Reviewer’s comments to authors n April 1, 2021: Submission deadline of revisions n June 1, 2021: Final decisions to authors n July 1, 2021: Publication date (Early access) GUEST EDITORS Yanwei Pang, Tianjin University, China, pyw@tju.edu.cn Fahad Shahbaz Khan, Inception Institute of Artificial Intelligence, UAE, fahad.khan@liu.se Xin Lu, Adobe Inc., USA, xinl@adobe.com Fabio Cuzzolin, Oxford Brookes University, UK, fabio.cuzzolin@brookes.ac.uk SUBMISSION INSTRUCTIONS n Read the Information for Authors at https://cis.ieee.org/tnnls. n Submit your manuscript at the TNNLS webpage (https://mc.manuscriptcentral.com/tnnls) and follow the submission procedure. Please, clearly indicate on the first page of the manuscript and in the cover letter that the manuscript is submitted to this special issue. Send an email to the leading editor Prof. Yanwei Pang (pyw@tju.edu.cn) with subject “TNNLS special issue submission” to notify your submission. n Early submissions are welcome. We will start the review process as soon as we receive your contributions. |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : TNNLS_CFP.pdf
2020-04-11 12:34:43, 220.23 K
» 猜你喜欢
自荐读博
已经有9人回复
投稿Elsevier的杂志(返修),总是在选择OA和subscription界面被踢皮球
已经有8人回复
自然科学基金委宣布启动申请书“瘦身提质”行动
已经有4人回复
求个博导看看
已经有18人回复
» 抢金币啦!回帖就可以得到:
福建师范大学柔性电子学院招收2026年博士(储能材料与柔性电子器件)
+1/86
成都理工大学全国重点实验室公开诚聘绿色有机合成方向联培生及科研助理
+1/79
广州
+1/65
昆明理工大学冶能院离子液体冶金课题组招收博士
+1/65
87 年东北小哥定居苏州(沪杭亦可),诚寻携手余生的你
+1/60
香港理工大学-应用生物与化学科技学系 招收2025年博士研究生
+2/56
坐标济南,山东农科院招 有机合成 or 药物化学 联培硕士研究生
+1/46
2026博士申请——有机化学\计算化学\药物化学方向
+1/44
福建师范大学柔性电子学院招收2026年博士(储能材料与柔性电子器件)
+2/40
北京林业大学木质素高值化利用创新团队招收2026年入学博士生
+1/32
西南交通大学前沿院碳中和与物质循环利用课题组招收博士生
+1/29
国家级人才课题组招收生物学相关专业2026年入学博士生
+1/12
中科院动物所招收2026年博士生(优先少干专项计划、化学或生命科学背景)
+1/10
国家级人才课题组招收2026年入学博士
+1/7
海南大学化学院—功能分子器件团队博士后招聘
+1/6
深容SCI智能体四大模块:Method, Introduction, Discussion, Abstract
+1/3
上海理工大学 生物医学工程专业 招收2026年全日制博士生一名
+1/2
英国博导招CSC博士生
+1/2
操作说明书:Thermo Delta Q 稳定同位素比质谱仪IRMS
+1/2
2026年国家级海外人才(启明计划&火炬计划)申报政策常见问题及答疑
+1/1
★
sig102657(金币+2): 谢谢参与
sig102657(金币+2): 谢谢参与
|
本帖内容被屏蔽 |
16楼2020-04-14 23:04:46
3楼2020-04-11 12:48:50
★
sig102657(金币+2): 谢谢参与
sig102657(金币+2): 谢谢参与
|
本帖内容被屏蔽 |
11楼2020-04-14 23:04:46
★
sig102657(金币+2): 谢谢参与
sig102657(金币+2): 谢谢参与
|
本帖内容被屏蔽 |
12楼2020-04-14 23:04:46
简单回复
tzynew2楼
2020-04-11 12:35
回复
sig102657(金币+2): 谢谢参与
9 发自小木虫Android客户端
qian19504楼
2020-04-11 12:54
回复
sig102657(金币+2): 谢谢参与
, 发自小木虫Android客户端
待鹰归来5楼
2020-04-11 15:06
回复
sig102657(金币+2): 谢谢参与
, 发自小木虫Android客户端
greenfly6楼
2020-04-11 15:15
回复
sig102657(金币+2): 谢谢参与
e 发自小木虫IOS客户端
nono20098楼
2020-04-11 20:49
回复
sig102657(金币+2): 谢谢参与
。 发自小木虫Android客户端
2020-04-13 07:25
回复
adsl987610楼
2020-04-13 19:05
回复
sig102657(金币+2): 谢谢参与
哦 发自小木虫Android客户端







回复此楼