| 查看: 351 | 回复: 1 | ||
| 当前主题已经存档。 | ||
[资源]
Economist 杂志评价 铅酸电池的文章
|
||
|
这是 http://www.economist.com/science/tm/displayStory.cfm?story_id=12924031&source=hptextfeature[/url] Lead-acid batteries Recharged ------A 150-year-old technology looks to the future LEAD-ACID batteries seem to have been around for ever. They were invented in 1859 by Gaston Planté, a French physicist, and have done sterling work over the decades starting car engines and powering slow-moving vehicles such as fork-lift trucks and milk floats. Compared with the newer energy technologies that are now sweeping the world, however, it has to be admitted that they look old-fashioned and a bit frumpy. These days the catwalk is crowded with nickel-metal hydride and lithium-ion batteries, showing off their ability to pack a lot of energy into a small space and deliver a steady current over a long period. The fact that these modern batteries are also lighter (lead is, after all, one of the densest elements in the periodic table) has made them the first choices for powering truly serious electric vehicles, as opposed to the ones that potter about warehouses and suburban streets. It is, nevertheless, a mistake to dismiss something just because it is old. Another way of looking at things is that lead-acid batteries are tried and trusted. They may just need a bit of pepping up. And that is what is now happening. Axion Power, a firm based near Pittsburgh, Pennsylvania, has found that the ideal tonic is carbon. A conventional lead-acid battery is a simple affair, made up of a series of cells each containing a positive electrode made of lead dioxide and a negative electrode of metallic lead. These are immersed in an electrolyte of dilute sulphuric acid. Car batteries tend to have thin electrode plates, which allows a lot of energy to be discharged quickly, but only for a short period of time. That is fine for turning a starter motor, but it is not so good for turning an electric motor intended to move a car any distance. Moreover, a lead-acid battery can be ruined if it is discharged completely, as many motorists discover to their cost when trying to start their car on an icy morning. Lead-acid batteries with thicker electrodes can tolerate such “deep” discharges better than those with thin ones, but only at the expense of making a heavy battery even heavier. In Axion’s battery the negative electrode is replaced with one made from activated carbon, a material used in supercapacitors. Normal capacitors—those that power the flashguns in cameras for instance—can be charged and discharged rapidly, but cannot store much energy. Supercapacitors are meatier versions that are able to hold a reasonable amount of energy as well as taking it in and releasing it quickly. Some, indeed, are already used in tandem with the lithium-ion batteries in electric cars to boost acceleration and recapture energy during so-called “regenerative” braking. Axion’s plan, therefore, is to have the best of both worlds by building a lead-acid/carbon hybrid, or PbC. The carbon in the hybrid, which is protected within a sandwich of other materials, is more effective than metallic lead at releasing and absorbing protons to and from the acid during charging and discharging. In tests, Axion says, its PbCs have withstood more than 1,600 charges and deep discharges before they failed, which is three times better than standard lead-acid batteries specifically designed for such deep cycles. True, the hybrids are still heavy compared with lithium-ion batteries. “But not everyone needs or can afford an electric car that accelerates like a Tesla,” says Ed Buiel, Axion’s chief technical officer, referring to the fastest electric car yet to be put into production, which uses a huge pack of lithium-ion cells. And for those who do not require Tesla-like performance, this makes sense. The hybrids are durable and also cheap to make because, according to Dr Buiel, they can be produced on existing lead-acid production lines. A Tesla costs $109,000. Axion, by contrast, has converted a pickup truck to run on a pack of its hybrids for around $8,000. (It has a range of 70km or about 45 miles.) The company is also working with a number of other small engineering firms to convert other sorts of vehicles. |
» 猜你喜欢
大连工业大学招收储能电池方向博士1名
已经有0人回复
《把心放慢,世界就会温柔起来》
已经有0人回复
物理化学论文润色/翻译怎么收费?
已经有180人回复
钠离子硬碳负极扣式半电池组装都没有电流!!!
已经有2人回复
Ni元素XPS分析
已经有1人回复
广东以色列理工材料系能源与电子材料课题组——博士(以色列理工学位)
已经有3人回复
青岛大学化学化工学院分子测量学研究院2026年招收博士研究生
已经有0人回复
求一份origin2019以上版本的origin软件压缩包
已经有1人回复
电化学基础知识与资源网站
已经有2人回复
宁夏大学国家重点实验室膜分离课题组招收2026级博士生
已经有0人回复













回复此楼