| 查看: 2884 | 回复: 59 | ||||||||
| 【奖励】 本帖被评价48次,作者pkusiyuan增加金币 38 个 | ||||||||
[资源]
From Classical To Quantum Mechanics
|
||||||||
|
Contents Preface page xiii Acknowledgments xvi Part I From classical to wave mechanics 1 1 Experimental foundations of quantum theory 3 1.1 The need for a quantum theory 3 1.2 Our path towards quantum theory 6 1.3 Photoelectric effect 7 1.4 Compton effect 11 1.5 Interference experiments 17 1.6 Atomic spectra and the Bohr hypotheses 22 1.7 The experiment of Franck and Hertz 26 1.8 Wave-like behaviour and the Bragg experiment 27 1.9 The experiment of Davisson and Germer 33 1.10 Position and velocity of an electron 37 1.11 Problems 41 Appendix 1.A The phase 1-form 41 2 Classical dynamics 43 2.1 Poisson brackets 44 2.2 Symplectic geometry 45 2.3 Generating functions of canonical transformations 49 2.4 Hamilton and Hamilton–Jacobi equations 59 2.5 The Hamilton principal function 61 2.6 The characteristic function 64 2.7 Hamilton equations associated with metric tensors 66 2.8 Introduction to geometrical optics 68 2.9 Problems 73 Appendix 2.A Vector fields 74 vii viii Contents Appendix 2.B Lie algebras and basic group theory 76 Appendix 2.C Some basic geometrical operations 80 Appendix 2.D Space–time 83 Appendix 2.E From Newton to Euler–Lagrange 83 3 Wave equations 86 3.1 The wave equation 86 3.2 Cauchy problem for the wave equation 88 3.3 Fundamental solutions 90 3.4 Symmetries of wave equations 91 3.5 Wave packets 92 3.6 Fourier analysis and dispersion relations 92 3.7 Geometrical optics from the wave equation 99 3.8 Phase and group velocity 100 3.9 The Helmholtz equation 104 3.10 Eikonal approximation for the scalar wave equation 105 3.11 Problems 114 4 Wave mechanics 115 4.1 From classical to wave mechanics 115 4.2 Uncertainty relations for position and momentum 128 4.3 Transformation properties of wave functions 131 4.4 Green kernel of the Schr¨ odinger equation 136 4.5 Example of isometric non-unitary operator 142 4.6 Boundary conditions 144 4.7 Harmonic oscillator 151 4.8 JWKB solutions of the Schrödinger equation 155 4.9 From wave mechanics to Bohr–Sommerfeld 162 4.10 Problems 167 Appendix 4.A Glossary of functional analysis 167 Appendix 4.B JWKB approximation 172 Appendix 4.C Asymptotic expansions 174 5 Applications of wave mechanics 176 5.1 Reflection and transmission 176 5.2 Step-like potential; tunnelling effect 180 5.3 Linear potential 186 5.4 The Schr¨ odinger equation in a central potential 191 5.5 Hydrogen atom 196 5.6 Introduction to angular momentum 201 5.7 Homomorphism between SU(2) and SO(3) 211 5.8 Energy bands with periodic potentials 217 5.9 Problems 220 Contents ix Appendix 5.A Stationary phase method 221 Appendix 5.B Bessel functions 223 6 Introduction to spin 226 6.1 Stern–Gerlach experiment and electron spin 226 6.2 Wave functions with spin 230 6.3 The Pauli equation 233 6.4 Solutions of the Pauli equation 235 6.5 Landau levels 239 6.6 Problems 241 Appendix 6.A Lagrangian of a charged particle 242 Appendix 6.B Charged particle in a monopole field 242 7 Perturbation theory 244 7.1 Approximate methods for stationary states 244 7.2 Very close levels 250 7.3 Anharmonic oscillator 252 7.4 Occurrence of degeneracy 255 7.5 Stark effect 259 7.6 Zeeman effect 263 7.7 Variational method 266 7.8 Time-dependent formalism 269 7.9 Limiting cases of time-dependent theory 274 7.10 The nature of perturbative series 280 7.11 More about singular perturbations 284 7.12 Problems 293 Appendix 7.A Convergence in the strong resolvent sense 295 8 Scattering theory 297 8.1 Aims and problems of scattering theory 297 8.2 Integral equation for scattering problems 302 8.3 The Born series and potentials of the Rollnik class 305 8.4 Partial wave expansion 307 8.5 The Levinson theorem 310 8.6 Scattering from singular potentials 314 8.7 Resonances 317 8.8 Separable potential model 320 8.9 Bound states in the completeness relationship 323 8.10 Excitable potential model 324 8.11 Unitarity of the Möller operator 327 8.12 Quantum decay and survival amplitude 328 8.13 Problems 335 x Contents Part II Weyl quantization and algebraic methods 337 9 Weyl quantization 339 9.1 The commutator in wave mechanics 339 9.2 Abstract version of the commutator 340 9.3 Canonical operators and the Wintner theorem 341 9.4 Canonical quantization of commutation relations 343 9.5 Weyl quantization and Weyl systems 345 9.6 The Schr¨ odinger picture 347 9.7 From Weyl systems to commutation relations 348 9.8 Heisenberg representation for temporal evolution 350 9.9 Generalized uncertainty relations 351 9.10 Unitary operators and symplectic linear maps 357 9.11 On the meaning of Weyl quantization 363 9.12 The basic postulates of quantum theory 365 9.13 Problems 372 10 Harmonic oscillators and quantum optics 375 10.1 Algebraic formalism for harmonic oscillators 375 10.2 A thorough understanding of Landau levels 383 10.3 Coherent states 386 10.4 Weyl systems for coherent states 390 10.5 Two-photon coherent states 393 10.6 Problems 395 11 Angular momentum operators 398 11.1 Angular momentum: general formalism 398 11.2 Two-dimensional harmonic oscillator 406 11.3 Rotations of angular momentum operators 409 11.4 Clebsch–Gordan coefficients and the Regge map 412 11.5 Postulates of quantum mechanics with spin 416 11.6 Spin and Weyl systems 419 11.7 Monopole harmonics 420 11.8 Problems 426 12 Algebraic methods for eigenvalue problems 429 12.1 Quasi-exactly solvable operators 429 12.2 Transformation operators for the hydrogen atom 432 12.3 Darboux maps: general framework 435 12.4 SU(1,1) structures in a central potential 438 12.5 The Runge–Lenz vector 441 12.6 Problems 443 Contents xi 13 From density matrix to geometrical phases 445 13.1 The density matrix 446 13.2 Applications of the density matrix 450 13.3 Quantum entanglement 453 13.4 Hidden variables and the Bell inequalities 455 13.5 Entangled pairs of photons 459 13.6 Production of statistical mixtures 461 13.7 Pancharatnam and Berry phases 464 13.8 The Wigner theorem and symmetries 468 13.9 A modern perspective on the Wigner theorem 472 13.10 Problems 476 Part III Selected topics 477 14 From classical to quantum statistical mechanics 479 14.1 Aims and main assumptions 480 14.2 Canonical ensemble 481 14.3 Microcanonical ensemble 482 14.4 Partition function 483 14.5 Equipartition of energy 485 14.6 Specific heats of gases and solids 486 14.7 Black-body radiation 487 14.8 Quantum models of specific heats 502 14.9 Identical particles in quantum mechanics 504 14.10 Bose–Einstein and Fermi–Dirac gases 516 14.11 Statistical derivation of the Planck formula 519 14.12 Problems 522 Appendix 14.A Towards the Planck formula 522 15 Lagrangian and phase-space formulations 526 15.1 The Schwinger formulation of quantum dynamics 526 15.2 Propagator and probability amplitude 529 15.3 Lagrangian formulation of quantum mechanics 533 15.4 Green kernel for quadratic Lagrangians 536 15.5 Quantum mechanics in phase space 541 15.6 Problems 548 Appendix 15.A The Trotter product formula 548 16 Dirac equation and no-interaction theorem 550 16.1 The Dirac equation 550 16.2 Particles in mutual interaction 554 16.3 Relativistic interacting particles. Manifest covariance 555 16.4 The no-interaction theorem in classical mechanics 556 16.5 Relativistic quantum particles 563 xii Contents 16.6 From particles to fields 564 16.7 The Kirchhoff principle, antiparticles and QFT 565 References 571 Index 588 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Cambridge_University_Press_-_From_Classical_To_Quantum_Mechanics.pdf
2016-09-11 01:28:55, 7.77 M
» 收录本帖的淘帖专辑推荐
精华网帖收集 | 自然科学 | FEM/MECHANICS/MATE | 分子动力学 |
研究生学习 | 物理 |
» 猜你喜欢
计算机、0854电子信息(085401-058412)调剂
已经有5人回复
国自然申请面上模板最新2026版出了吗?
已经有13人回复
基金委咋了?2026年的指南还没有出来?
已经有3人回复
Materials Today Chemistry审稿周期
已经有5人回复
溴的反应液脱色
已经有7人回复
推荐一本书
已经有12人回复
基金申报
已经有4人回复
纳米粒子粒径的测量
已经有7人回复
常年博士招收(双一流,工科)
已经有4人回复
有没有人能给点建议
已经有5人回复
» 本主题相关价值贴推荐,对您同样有帮助:
Quantum Mechanics in the Geometry of Space-Time
已经有28人回复
Advanced Quantum Mechanics, Dyson 2nd Edition Dyson高等量子力学
已经有73人回复
Advanced Quantum Mechanics: A Practical Guide 高等量子力学:实用导论
已经有91人回复
【一本量子力学的好书】《The Picture Book of Quantum Mechanics》
已经有327人回复
Quantum.Mechanics.Classical.Results.Modern.Systems.and.Visualized.Examples
已经有46人回复
Shun-Qing Shen:Lecture Notes On Quantum Mechanics
已经有49人回复
De Gruyter2012Theory of Interacting Quantum Fields
已经有8人回复
Introduction to Mathematical Physics: Methods & Concepts
已经有40人回复
Advanced Concepts in Quantum Mechanics
已经有12人回复
The Emerging Quantum: The Physics Behind Quantum Mechanics
已经有14人回复
【英美经典书籍】《Introduction to computational materials science》【无重复】
已经有158人回复
【英美经典教材】《Statistical Mechanics: Algorithms and Computations》【无重复】
已经有141人回复
2013年新著——量子力学进展(英文版)
已经有296人回复
Modern Theories of Many-Particle Systems in Condensed Matter Physics
已经有85人回复
Theoretical Concepts of Quantum Mechanics [Kindle Edition]
已经有29人回复
Quantum Symmetries on Operator Algebras[David E. Evans, Yasuyuki Kawahigashi ]
已经有31人回复
Diagrammatica: The Path to Feynman Diagrams
已经有44人回复
Introductory Quantum Mechanics for Semiconductor Nanotechnology----好书推荐
已经有2人回复
30楼2016-09-15 09:20:07
简单回复
2016-09-11 05:50
回复
五星好评 顶一下,感谢分享!
2016-09-11 11:23
回复
五星好评 顶一下,感谢分享!
2016-09-11 12:01
回复
五星好评 顶一下,感谢分享!
2016-09-11 14:53
回复
一般 顶一下,感谢分享!
zjuer6楼
2016-09-12 02:12
回复
五星好评 顶一下,感谢分享!
yu51617楼
2016-09-12 05:08
回复
五星好评 顶一下,感谢分享!
alice绵绵8楼
2016-09-12 06:40
回复
五星好评
2016-09-12 08:04
回复
五星好评 顶一下,感谢分享!
keda10楼
2016-09-12 08:41
回复
五星好评 顶一下,感谢分享!
c2002z11楼
2016-09-12 09:18
回复
五星好评 顶一下,感谢分享!
c2002z12楼
2016-09-12 09:34
回复
顶一下,感谢分享!
lishucai13楼
2016-09-12 10:06
回复
五星好评 顶一下,感谢分享!
wangwenju14楼
2016-09-12 10:26
回复
五星好评 顶一下,感谢分享!
ha166815楼
2016-09-12 10:41
回复
五星好评 顶一下,感谢分享!
happyfishs16楼
2016-09-12 11:45
回复
五星好评 顶一下,感谢分享!
wxc88017楼
2016-09-12 14:40
回复
五星好评 顶一下,感谢分享!
fdingfff18楼
2016-09-13 13:07
回复
五星好评 顶一下,感谢分享!
撒哈拉的精彩19楼
2016-09-13 15:02
回复
五星好评 顶一下,感谢分享!
congyu_200720楼
2016-09-13 16:47
回复
五星好评 顶一下,感谢分享!
zhaozilai21楼
2016-09-13 17:34
回复
五星好评 顶一下,感谢分享!
张屠户22楼
2016-09-13 18:13
回复
五星好评 顶一下,感谢分享!
holisky23楼
2016-09-14 09:19
回复
五星好评 顶一下,感谢分享!
shujj24楼
2016-09-14 18:13
回复
五星好评 顶一下,感谢分享!
jinpengfei25楼
2016-09-14 19:18
回复
五星好评 顶一下,感谢分享!
gpwang52626楼
2016-09-14 20:11
回复
五星好评 顶一下,感谢分享!
yinby98927楼
2016-09-14 21:34
回复
五星好评 顶一下,感谢分享!
wwwzg28楼
2016-09-14 22:44
回复
五星好评 顶一下,感谢分享!
2016-09-15 07:29
回复
五星好评 顶一下,感谢分享!
njust131楼
2016-09-15 11:35
回复
五星好评 顶一下,感谢分享!
wangwenju32楼
2016-09-15 12:27
回复
顶一下,感谢分享!
2016-09-15 13:08
回复
五星好评 顶一下,感谢分享!
chenyuwen34楼
2016-09-15 17:56
回复
五星好评 顶一下,感谢分享!
zhchzhsh207635楼
2016-09-15 21:28
回复
五星好评 顶一下,感谢分享!
smc196608236楼
2016-09-17 11:01
回复
五星好评 顶一下,感谢分享!
awmc200837楼
2016-09-17 21:01
回复
五星好评 顶一下,感谢分享!
aso38楼
2016-09-25 23:16
回复
五星好评 顶一下,感谢分享!
photonics10539楼
2016-10-06 20:41
回复
五星好评 顶一下,感谢分享!
zming6540楼
2016-10-08 12:12
回复
五星好评 顶一下,感谢分享!
杭州小水电41楼
2016-10-21 15:41
回复
五星好评 顶一下,感谢分享!
keda42楼
2016-11-23 23:15
回复
顶一下,感谢分享!
tsunamis43楼
2017-02-06 10:44
回复
五星好评 顶一下,感谢分享!
iuang44楼
2017-02-24 22:02
回复
五星好评 顶一下,感谢分享!
zhengj198045楼
2017-06-09 08:41
回复
五星好评 顶一下,感谢分享!
wangth092146楼
2017-06-09 15:16
回复
五星好评 顶一下,感谢分享!
jackzhou547楼
2019-01-17 16:00
回复
五星好评 顶一下,感谢分享!
shangren550448楼
2019-02-08 23:47
回复
五星好评 顶一下,感谢分享!
wangwenju49楼
2019-02-12 20:35
回复
顶一下,感谢分享!
du2008112950楼
2019-08-21 15:19
回复
五星好评 顶一下,感谢分享!











回复此楼