| 查看: 2386 | 回复: 30 | |||
| 当前主题已经存档。 | |||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||
飘无影银虫 (正式写手)
|
[交流]
【原创】数字推理总结(11.20更新)
|
||
|
================================= ||如果大家觉得好的话,请回帖鼓励一下,谢谢了|| ================================= 数字推理是行测中很多人眼里的“难题”,面对题目时有人因为惧怕而格外重视,也有人因为不会做而彻底放弃。我最终选择的是:掌握最基本的,保证基础题目不丢分。放弃有难度的,保证学习和做题有效率。 常见且易被忽视的数列: 1、质数列:(质数—只有1和其本身两个约数)2,3,5,7,11,13,17,19,23,29,31,37,41,43…… 例:6 8 11 16 23 ( ) A. 32 B.34 C.36 D.38 1,1,2,3,4,7,() A、4 B、6 C、10 D、12 选B 两两相加组成质数列 3,7,22,45,() A、58 B、73 C、94 D、116 选D 2^2-1 3^2-2 5^2-3 7^2-4 (11^2-5) 2、合数列:4、6、8、9、10、12、14、15、16、18、20…… 行测考试做题时间很关键。要做好行测尤其是数列部分需要技巧,但大家往往忽视了基本功。为什么有些人看到数列题就很快得出答案?个人觉得是他们对数字的敏感。这里面有天赋的成分,但刻苦训练也是可以锻炼出这种敏感的。故熟练掌握各种基本数列很重要。拿指数数列来说,必须熟记1—10的平方、立方,2、3、4、5的N次方。只有这样,你才能在看到9时立刻想到9=3平方或9=2立方+1。对这几个数字,必须是熟记。5的立方谁不会算?可是数列题不是叫你算5的立方是多少的,当4、28、16、126这样的数列放在你面前时,忽增忽减看似毫无规律,你会想到这里有5的立方吗?所以必须熟记。熟到不能再熟。 以下是把大家最爱问的、经常不会做的题目整理在一起,总结的数列常见方法。 分组法 相邻项为一组,各组规律相同。或差为常数、或和为常数。 4,3,1,12,9,3,17,5(A) A12 B13 C14 D15 4.5,3.5,2.8,5.2,4.4,3.6,5.7,( A) A.2.3 B.3.3 C.4.3 D.5.3 拆分相加(乘)法 把一个多位数每个位上的数字分别相加或相乘得到一个新数,再看规律。这类题变型比较多,所以写出例题解答过程。 87 57 36 19 ( ) 1 A. 17 B.15 C.12 D.10 选D 8×7+1=57 5×7+1=36 3×6+1=19 1×9+1=10 0×1+1=1 256 ,269 ,286 ,302 ,() A.254 B.307 C.294 D.316 选B 2+5+6=13 256+13=269 2+6+9=17 269+17=286 2+8+6=16 286+16=302 ?=302+3+2=307 隔项法 奇数项和偶数项分别组成新的数列 0,12,24,14,120,16,( ) A:280 B:32 C:64 D:336 选D 奇数项为 0,24,120,? 0=13-1 24=33-3 120=53-5 ?=73-7 三项相加法 这种题其实比较简单,但大家也容易疏忽。三项相加后得到一个新数列,再看规律 2,3,4,9,12,15,22,() 答案:27 2+3+4=9 3+4+9=16 4+9+12=25 …… C=A平方-B及其变型 3,5,4,21,(A),446 A.-5 B.25 C.30 D. 143 变型1:可以是A平方加减一个常数(或有规律的变数) 3,5,16,(240) 变型2:A立方加减常数(或有规律的变数) -1,0,1,2,9,(730) 关于平方、立方还有很多类型,比如自然数列的平方加减常数(或规律变数)、常数的N次方加减常数(或规律变数)……其实都差不多。只要掌握我前面所说的“熟练记忆”,再加上一定练习相信是可以过关的了。 0,3,17,95,() 答案:599 1平方-1 1*2平方-1 1*2*3平方-1 2*3*4平方-1 2*3*4*5平方-1 1,10,3,5,() A、11 B、9 C、12 D、4 选D 题目变为:一、十、三、五……分别是1划、2划、3划、4划 分解相乘 把原数分解成2个数字的积,分解之后,变成2个新数列,再看它们之间的规律 例1:2,12,36,80,() 答案:150 解析:2*1 3*4 4*9 5*16 例2:6,15,40,96,() A、216 B、204 C、196 D、176 选B 解析:2*3=6 3*5=15 5*8=40 8*12=96 12*17=204 例3:2,3,5,8,12,17 相差1,2,3,4,5, 以下都是最基础的,原本以为不用写上来。可是今天看到还是有人不会。所以加上。 一、立方和公式: a立方+b立方=(a+b)(a平方-ab+b平方) a立方-b立方=(a-b)(a平方+ab+b平方) 二、特殊数列前N项和 1+2+3+4+5+6……+n=n(n+1)/2 2+4+6+8+10+……+2n=n(n+1) 1+3+5+7+……+(2n-1)=n平方 1平方+2平方+3平方+4平方+……+n平方=n(n+1)(2n+1)/6 1立方+2立方+3立方+4立方+……+n立方=n^2(n+1)^2/4 三、等差数列求和公式: (1)Sn=n(a1+an)/2 (2) Sn=na1+n(n-1)d/2 (这里面的字母都代表什么就不用解释了吧) 例:某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位.这个剧院一共有多少座位? A.1104 B.1150 C.1170 D.1280 都是中学学过的,只是 给大家提个醒,别忘了这些。 巧用因式分解法 有时因式分解法可以很快的解决一些看起来很难的题。 例如:四个连续自然数的积为3024,它们的和为:( ) A.26 B.52 C.30 D.28 3024=6*7*8*9 分解之后,是不是就一目了然了呢 而有时候,需要我们反过来思考,把分解过的因式化为整式。 如:(2+1)*(2^2+1)*(2^4+1)*(2^8+1)(2^16+1)=? 看上去很复杂,可是只要我们想到平方差的公式,问题就迎刃而解了 (2+1)*(2^2+1)*(2^4+1)*(2^8+1)(2^16+1) =1*(2+1)*(2^2+1)*(2^4+1)*(2^8+1)(2^16+1) =(2-1) * (2+1)*(2^2+1)*(2^4+1)*(2^8+1)(2^16+1) = 2^32-1 一、拆分相加(乘)法1、256 ,269 ,286 ,302 ,( ) A.254 B.307 C.294 D.316 这道题首先观察是增长趋势并且比较平缓,如果不熟悉肯定先想到做差,那我们就可以先花5秒时间看是不是等差数列,做差为13、17、16,很明显排除一级、二级等差,这时再扫一眼应该就会发现,13恰好等于256的各个位数和,再验证其他数,也有类似规律,所以 解:2+5+6=13 256+13=269 2+6+9=17 269+17=286 2+8+6=16 286+16=302 ?=302+3+2=307 二、拆分观察法 1、1955 ,2153,2450 ,2945 ,() 这类题,看起来也像等差,但验证后不对。很明显也排除指数法和其他,所以就可以试下把每个数字分开来看。(19,55)为一组 (21,53)为一组,……这样得到新数列: (19,55),(21,53),(24,50),(29,45),可以看出每组第一个数字组成的新数列19,21,24,29,后项与前项的差为2、3、5、7……也就是差为质数列,每组第二个数字组成的新数列55,53,50,45,前项与后项的差也为2、3、5、7的质数列,所以推得(A,B)中A=29+11=40,B=45-11=33,?=4033。 2、124,3612,51020,( ) A、61224 B、71428 C、81632 D、91836 这道题除了要拆开看每个数字以外,还要注意首位数的变化。因为四个选项都符合后位数是前位数的两倍的规律(124——1*2=2 2*2=4,3618——3*2=6 6*2=12……)如果只看这一个规律是没法选的。而每个数的第一位分别为1、3、5很快就会发现选项第一位数应该是7 三、分组法1、19,4,18,3,16,1,17,(D ) A.5 B.4 C.3 D.2 向这样一会增一会减没什么规律的数,一看到就不用考虑别的了,先想分组法是不是能解决 分组法最明显的特点就是给出的数列通常由7个或更多组成 解析:(19,4),(18,3),(16,1),(17,?) 19-4=15 18-3=15 …… 2、4 ,3 ,1 ,12 ,9 ,3 ,17 ,5 ,( A) A.12 B.13 C.14 D.15 解析:(4 ,3 ,1 ),(12 ,9 ,3 ),(17 ,5 ,?) 4=3+1 12=9+3 17=5+12 3、12,2,2,3,14,2,7,1,18,3,2,3,40,10,(D ),4 A.4 B.3 C.2 D.1 解析:(12,2,2,3),(14,2,7,1),(18,3,2,3),(40,10,?,4) 12=2*2*3 14=2*7*1 …… 四、指数法1、3 ,7 ,47 ,2207 ,( ) A.4414 B 6621 C.8828 D.4870847 看到这种变化很大的,陡增或陡减的题,该想到什么呢?肯定是和指数有关啦 变数的平方、立方,或常数的N次方 回到这道题,扫一眼,我最先感觉到的就是7的平方-2=47。再验证,7=3平方-2,47=7平方-2,2207=47平方-2,证明方法对了,选D。不用真去算2207的平方是多少,按位数或尾数一眼就看出来了。 这类题有很多变形,如果出难一点,可能会看起来像是等差或等比数列什么的,不过我一时想不起来例子了。先看几道比较简单的例题吧 2、4 ,11 ,30 ,67 ,( ) A.126 B.127 C.128 D.129 5秒钟排除二级等差的可能性同时可以排除了等比、二级等比。这时再仔细看一遍各个数字间的联系,我找到的突破口时67这个数字,应该等差等比都已排除所以很自然地想到了指数,而看到67,好象和64有点关联哦,64是8平方或者4立方,那么到底是平方还是立方呢,再看其他数字,30、11,综合这两个数字,再结合对平方数立方数的敏感,判断应该是立方,30和27接近,11和8接近,并且这样的话2、3、4就可以连起来了。 解析:4=1^3+3,11=2^3+3,30=3^3+3,67=4^3+3,这是一个自然数列的立方分别加3而得。依此规律,( )内之数应为5^3+3=128。 故本题的正确答案为C。 3、5 , 10 , 26 , 65 , 145 , ( ) A.197 B.226 C.257 D.290 最明显的,26,65,当然就锁定和平方有关系了,先列出分析 2^2+1=5 3^2+1=10 5^2+1=26 8^2+1=65 12^2+1=145 17^2+1=290 再验证2、3、5、8、12、17的关系,发现它们之间的差分别是1、2、3、4、5,说明是有规律的,方法正确,选答案,心情超好,然后看下题,哈哈,数学就是这么简单吧 4、1 ,32 ,81 ,64 ,25 ,(6) ,1 ,1/8 看到这种前面数字还都挺大,突然出现个分数的,那就一定是和指数有关的了,绝对没错 解析: 1=16 32=25 81=34 64=43 25=52 ?=61 1=70 1/8=8-1 五、乘数法1、3 , 7 , 16 , 107 ,( ) 这样的题,好象也是陡增了,可是107这个数字和平方立方什么的离的都有点远,而且16本身就是平方数,不存在再加减的问题,所以pass!重找出路。这时,告诉你哈,应该想到的另一个办法就是,乘法。乘以一个什么样的数字,才能让数字的增加幅度越来越大呢,想到没?就是乘前面的数字,可以是第三和前两项之积有关,也可以是第二项和第一项与另外一个数字的积有关。这道题是第一种类型,既: 16=3×7-5 107=16×7-5答案:1707=107×16-5 2、1,3,14,128,(2050) 突破口是3、14这两个数字,这里还要说一下,一般情况下,不要拿1去验证,比如这道题,1和3,3可以=2+1也可以=1*1+2还有好几个关系式都可以成立。如果选1做突破口来查找数列的规律很难的,所以我选了3和14来看。既然决定了规律是和乘积有关,那么14=3*4+2 再看14和148 128=14*9+2,这个时候规律是不是就出来了?剩下的步骤,自己完成吧。 第一部分、数字推理 一、基本要求 熟记熟悉常见数列,保持数字的敏感性,同时要注意倒序。 自然数平方数列:4,1,0,1,4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,324,361,400…… 自然数立方数列:-8,-1,0,1,8,27,64,125,216,343,512,729,1000 质数数列: 2,3,5,7,11,13,17……(注意倒序,如17,13,11,7,5,3,2) 合数数列: 4,6,8,9,10,12,14…….(注意倒序) 二、解题思路: 1 基本思路:第一反应是两项间相减,相除,平方,立方。所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列。 相减,是否二级等差。 8,15,24,35,(48) 相除,如商约有规律,则为隐藏等比。 4,7,15,29,59,(59*2-1)初看相领项的商约为2,再看4*2-1=7,7*2+1=15…… 2特殊观察: 项很多,分组。三个一组,两个一组 4,3,1,12,9,3,17,5,(12) 三个一组 19,4,18,3,16,1,17,(2) 2,-1,4,0,5,4,7,9,11,(14)两项和为平方数列。 400,200,380,190,350,170,300,(130)两项差为等差数列 隔项,是否有规律 0,12,24,14,120,16(7^3-7) 数字从小到大到小,与指数有关 1,32,81,64,25,6,1,1/8 隔项,是否有规律 0,12,24,14,120,16(7^3-7) 每个数都两个数以上,考虑拆分相加(相乘)法。 87,57,36,19,(1*9+1) 256,269,286,302,(302+3+0+2) 数跳得大,与次方(不是特别大),乘法(跳得很大)有关 1,2,6,42,(42^2+42) 3,7,16,107,(16*107-5) 每三项/二项相加,是否有规律。 1,2,5,20,39,(125-20-39) 21,15,34,30,51,(10^2-51) C=A^2-B及变形(看到前面都是正数,突然一个负数,可以试试) 3,5,4,21,(4^2-21),446 5,6,19,17,344,(-55) -1,0,1,2,9,(9^3+1) C=A^2+B及变形(数字变化较大) 1,6,7,43,(49+43) 1,2,5,27,(5+27^2) 分数,通分,使分子/分母相同,或者分子分母之间有联系。/也有考虑到等比的可能 2/3,1/3,2/9,1/6,(2/15) 3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列 1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。 3,2,7/2,12/5,(12/1) 通分,3,2 变形为3/1,6/3,则各项分子、分母差为质数数列。 64,48,36,27,81/4,(243/16)等比数列。 出现三个连续自然数,则要考虑合数数列变种的可能。 7,9,11,12,13,(12+3) 8,12,16,18,20,(12*2) 突然出现非正常的数,考虑C项等于 A项和B项之间加减乘除,或者与常数/数列的变形 2,1,7,23,83,(A*2+B*3)思路是将C化为A与B的变形,再尝试是否正确。 1,3,4,7,11,(18) 8,5,3,2,1,1,(1-1) 首尾项的关系,出现大小乱现的规律就要考虑。 3,6,4,(18),12,24 首尾相乘 10,4,3,5,4,(-2)首尾相加 旁边两项(如a1,a3)与中间项(如a2)的关系 1,4,3,-1,-4,-3,( -3―(-4) ) 1/2,1/6,1/3,2,6,3,(1/2) B项等于A项乘一个数后加减一个常数 3,5,9,17,(33) 5,6,8,12,20,(20*2-4) 如果出现从大排到小的数,可能是A项等于B项与C项之间加减乘除。 157,65,27,11,5,(11-5*2) 一个数反复出现可能是次方关系,也可能是差值关系 -1,-2,-1,2,(-7) 差值是2级等差 1,0,-1,0,7,(2^6-6^2) 1,0,1,8,9,(4^1) 除3求余题,做题没想法时,试试(亦有除5求余) 4,9,1,3,7,6,( C) A.5 B.6. C.7 D.8 (余数是1,0,1,0,10,1) 3.怪题: 日期型 2100-2-9,2100-2-13,2100-2-18,2100-2-24,(2100-3-3) 结绳计数 1212,2122,3211,131221,(311322) 2122指1212有2个1,2个2. [ Last edited by 飘无影 on 2008-11-20 at 08:59 ] |
» 猜你喜欢
2025冷门绝学什么时候出结果
已经有3人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有4人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
AI论文写作工具:是科研加速器还是学术作弊器?
已经有3人回复
孩子确诊有中度注意力缺陷
已经有6人回复
2026博士申请-功能高分子,水凝胶方向
已经有6人回复
论文投稿,期刊推荐
已经有4人回复
硕士和导师闹得不愉快
已经有13人回复
请问2026国家基金面上项目会启动申2停1吗
已经有5人回复
同一篇文章,用不同账号投稿对编辑决定是否送审有没有影响?
已经有3人回复
» 本主题相关商家推荐: (我也要在这里推广)

19楼2009-01-16 14:38:14
2楼2008-11-17 17:10:05
3楼2008-11-17 23:06:32
nanaliu
金虫 (正式写手)
- CSE-EPI: 18
- 应助: 3 (幼儿园)
- 金币: 1109.8
- 红花: 2
- 帖子: 424
- 在线: 12.1小时
- 虫号: 623441
- 注册: 2008-10-11
- 性别: MM
- 专业: 其他无机非金属材料
4楼2008-11-18 10:53:17













回复此楼

