| 查看: 449 | 回复: 5 | |||
| 本帖产生 1 个 ,点击这里进行查看 | |||
manmenghua金虫 (著名写手)
|
[求助]
请帮忙检索文章的SCI收录号
|
||
|
请帮忙检索文章的SCI收录号,文章名:Quantification of degeneracy in Hodgkin-Huxley neurons on newman-watts small world network.作者Menghua Man,杂志:Journal of theoretical biology.2016,402C,67-74 发自小木虫Android客户端 |
» 猜你喜欢
溴的反应液脱色
已经有4人回复
参与限项
已经有5人回复
推荐一本书
已经有7人回复
有没有人能给点建议
已经有5人回复
假如你的研究生提出不合理要求
已经有12人回复
全日制(定向)博士
已经有5人回复
萌生出自己或许不适合搞科研的想法,现在跑or等等看?
已经有4人回复
Materials Today Chemistry审稿周期
已经有4人回复
对氯苯硼酸纯化
已经有3人回复
所感
已经有4人回复
FMStation
至尊木虫 (知名作家)
- 应助: 591 (博士)
- 贵宾: 0.03
- 金币: 18171.2
- 红花: 97
- 帖子: 8891
- 在线: 1487.1小时
- 虫号: 2400059
- 注册: 2013-04-04
- 专业: 计算机应用技术
【答案】应助回帖
感谢参与,应助指数 +1
|
Quantification of degeneracy in Hodgkin-Huxley neurons on Newman-Watts small world network 作者:Man, MH (Man, Menghua)[ 1 ] ; Zhang, Y (Zhang, Ya)[ 1 ] ; Ma, GL (Ma, Guilei)[ 1 ] ; Friston, K (Friston, Karl)[ 2 ] ; Liu, SH (Liu, Shanghe)[ 1 ] JOURNAL OF THEORETICAL BIOLOGY 卷: 402 頁碼: 62-74 DOI: 10.1016/j.jtbi.2016.05.004 出版日期: AUG 7 2016 |
2楼2016-08-14 12:55:46
manmenghua
金虫 (著名写手)
- 应助: 6 (幼儿园)
- 金币: 405.4
- 散金: 616
- 红花: 1
- 帖子: 1053
- 在线: 235.5小时
- 虫号: 1167538
- 注册: 2010-12-11
- 性别: GG
- 专业: 电磁环境与电磁兼容
3楼2016-08-14 13:05:26
baiyuefei
版主 (文学泰斗)
风雪
- 应助: 4642 (副教授)
- 贵宾: 46.969
- 金币: 658110
- 散金: 11616
- 红花: 995
- 沙发: 81
- 帖子: 69384
- 在线: 13285.5小时
- 虫号: 676696
- 注册: 2008-12-18
- 性别: GG
- 专业: 合成药物化学
- 管辖: 有机交流
【答案】应助回帖
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★
感谢参与,应助指数 +1
manmenghua(lazy锦溪代发): 金币+20, 协助结帖,感谢应助! 2016-08-17 15:46:55
lazy锦溪: LS-EPI+1 2016-08-17 15:47:14
感谢参与,应助指数 +1
manmenghua(lazy锦溪代发): 金币+20, 协助结帖,感谢应助! 2016-08-17 15:46:55
lazy锦溪: LS-EPI+1 2016-08-17 15:47:14
|
Quantification of degeneracy in Hodgkin-Huxley neurons on Newman-Watts small world network 作者:Man, MH (Man, Menghua)[ 1 ] ; Zhang, Y (Zhang, Ya)[ 1 ] ; Ma, GL (Ma, Guilei)[ 1 ] ; Friston, K (Friston, Karl)[ 2 ] ; Liu, SH (Liu, Shanghe)[ 1 ] JOURNAL OF THEORETICAL BIOLOGY 卷: 402 页: 62-74 DOI: 10.1016/j.jtbi.2016.05.004 出版年: AUG 7 2016 查看期刊信息 JOURNAL OF THEORETICAL BIOLOGY 出版商 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND ISSN: 0022-5193 eISSN: 1095-8541 研究领域 Life Sciences & Biomedicine - Other Topics Mathematical & Computational Biology 摘要 Degeneracy is a fundamental source of biological robustness, complexity and evolvability in many biological systems. However, degeneracy is often confused with redundancy. Furthermore, the quantification of degeneracy has not been addressed for realistic neuronal networks. The objective of this paper is to characterize degeneracy in neuronal network models via quantitative mathematic measures. Firstly, we establish Hodgkin-Huxley neuronal networks with Newman-Watts small world network architectures. Secondly, in order to calculate the degeneracy, redundancy and complexity in the ensuing networks, we use information entropy to quantify the information a neuronal response carries about the stimulus - and mutual information to measure the contribution of each subset of the neuronal network. Finally, we analyze the interdependency of degeneracy, redundancy and complexity and how these three measures depend upon network architectures. Our results suggest that degeneracy can be applied to any neuronal network as a formal measure, and degeneracy is distinct from redundancy. Qualitatively degeneracy and complexity are more highly correlated over different network architectures, in comparison to redundancy. Quantitatively, the relationship between both degeneracy and redundancy depends on network coupling strength: both degeneracy and redundancy increase with complexity for small coupling strengths; however, as coupling strength increases, redundancy decreases with complexity (in contrast to degeneracy, which is relatively invariant). These results suggest that the degeneracy is a general topologic characteristic of neuronal networks, which could be applied quantitatively in neuroscience and connectomics. (C) 2016 Elsevier Ltd. All rights reserved. 关键词 作者关键词:Complexity; Redundancy; Neuronal networks KeyWords Plus:NON-GAUSSIAN NOISE; FUNCTIONAL CONNECTIVITY; MULTIPLE RESONANCES; COGNITIVE FUNCTIONS; TIME DELAYS; BRAIN; COMPLEXITY; SYSTEMS; INFORMATION; MODEL 作者信息 通讯作者地址: Man, MH (通讯作者) Mech Engn Coll, Electrostat & Electromagnet Protect Inst, Shijiazhuang, Peoples R China. 地址: [ 1 ] Mech Engn Coll, Electrostat & Electromagnet Protect Inst, Shijiazhuang, Peoples R China [ 2 ] UCL, Inst Neurol, Wellcome Trust Ctr Neuroimaging, Queen Sq, London, England 增强组织信息的名称 University College London University of London 电子邮件地址:manmenghua@126.com 基金资助致谢 基金资助机构 授权号 National Natural Science Foundation of China 51407194 Wellcome Trust 088130/Z/09/Z 查看基金资助信息关闭基金资助信息 Thank anonymous reviewers for constructive comments on this work. We would like to thank Mai Lu and Qian Zhou for helpful suggestions. This work was supported by the National Natural Science Foundation of China (Grant no. 51407194). K.F. is funded by the Wellcome Trust (Ref.: 088130/Z/09/Z). 出版商 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 类别 / 分类 研究方向:Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology Web of Science 类别:Biology; Mathematical & Computational Biology 文献信息 文献类型:Article 语种:English 入藏号: WOS:000377623700008 PubMed ID: 27155043 ISSN: 0022-5193 eISSN: 1095-8541 其他信息 IDS 号: DO2QA Web of Science 核心合集中的 "引用的参考文献": 73 Web of Science 核心合集中的 "被引频次": 0 影响因子 2.049 2.156 2015 5 年 JCR® 类别 类别中的排序 JCR 分区 BIOLOGY 25/86 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY 14/56 Q1 数据来自第 2015 版 Journal Citation Reports® |
4楼2016-08-14 14:09:53
baiyuefei
版主 (文学泰斗)
风雪
- 应助: 4642 (副教授)
- 贵宾: 46.969
- 金币: 658110
- 散金: 11616
- 红花: 995
- 沙发: 81
- 帖子: 69384
- 在线: 13285.5小时
- 虫号: 676696
- 注册: 2008-12-18
- 性别: GG
- 专业: 合成药物化学
- 管辖: 有机交流
5楼2016-08-14 14:10:05
FMStation
至尊木虫 (知名作家)
- 应助: 591 (博士)
- 贵宾: 0.03
- 金币: 18171.2
- 红花: 97
- 帖子: 8891
- 在线: 1487.1小时
- 虫号: 2400059
- 注册: 2013-04-04
- 专业: 计算机应用技术
6楼2016-08-14 14:14:23












回复此楼