| 查看: 178 | 回复: 0 | |||
| 当前主题已经存档。 | |||
xianlei银虫 (小有名气)
|
[交流]
【求助】 微分方程的动力学行为分析
|
||
|
最近写论文,需要对形如dy/dt=Ay^2+By+c(其中y=y(t) )的微分方程,或其离散化后的差分方程y(t+1)=ay^2 (t)+by(t)+c的动力学行为作详细分析,也就是当系数A,B,C或a,b,c变化时候,方程的混沌、分岔以及稳定性、不动点、周期解等情况做分析。由于水平有限,现在求助于大家,希望能得到熟悉该方程的虫友的帮助,或者提供相关的信息比如参考文献等,在下不胜感激。另外,我考虑将差分方程变化后,把它变成经典的logistic方程,再根据它来确定原方程的动力学行为的方法是否正确。 [ Last edited by laizuliang on 2008-11-19 at 19:17 ] |
» 猜你喜欢
博士读完未来一定会好吗
已经有21人回复
导师想让我从独立一作变成了共一第一
已经有5人回复
到新单位后,换了新的研究方向,没有团队,持续积累2区以上论文,能申请到面上吗
已经有11人回复
读博
已经有4人回复
JMPT 期刊投稿流程
已经有4人回复
心脉受损
已经有5人回复
Springer期刊投稿求助
已经有4人回复
小论文投稿
已经有3人回复
Bioresource Technology期刊,第一次返修的时候被退回好几次了
已经有9人回复
申请2026年博士
已经有6人回复













回复此楼