24小时热门版块排行榜    

查看: 203  |  回复: 2
本帖产生 1 个 ,点击这里进行查看

mingze0108

铜虫 (小有名气)

[求助] 求帮忙检索该文章的检索号

基于Sigmoid二次型隶属度函数的改进LMS算法

发自小木虫IOS客户端
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

baiyuefei

版主 (文学泰斗)

风雪

优秀版主优秀版主优秀版主文献杰出贡献优秀版主优秀版主优秀版主文献杰出贡献优秀版主优秀版主优秀版主优秀版主文献杰出贡献优秀版主优秀版主优秀版主优秀版主优秀版主优秀版主

【答案】应助回帖

★ ★ ★ ★ ★
感谢参与,应助指数 +1
mingze0108(lazy锦溪代发): 金币+5, 协助结帖,感谢应助! 2016-05-27 08:56:50
lazy锦溪: LS-EPI+1, 感谢应助! 2016-05-27 08:56:55
ccession number:       
20150200412777
        Title:        Improved LMS algorithm based on Sigmoid quadratic membership function
        Authors:        Xu, Yang1 Email author mingze0108@126.com; Xu, Songtao1; Ma, Jian1; Yang, Yongjian1; Xiao, Bingsong1; Xiang, Jianjun1
        Author affiliation:        1 College of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi'an , China
        Corresponding author:        Xu, Yang
        Source title:        Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology)
        Abbreviated source title:        Zhongnan Daxue Xuebao (Ziran Kexue Ban)
        Volume:        45
        Issue:        10
        Issue date:        October 26, 2014
        Publication year:        2014
        Pages:        3470-3476
        Language:        Chinese
        ISSN:        16727207
        CODEN:        ZDXZAC
        Document type:        Journal article (JA)
        Publisher:        Central South University of Technology
        Abstract:        The least mean square (LMS) algorithm based on S-function some advantages such as has a small amount of calculation, high convergence rate and good tracking performance for time-varying systems. But when the signal's error is small, the step factor changes too fast, and system identification is not quick enough and the controllable variables are few. To solve the above shortcomings, an algorithm based on the sigmoid quadratic membership function was put forward. The results show that convergence rate of the algorithm is superior to other improved algorithms based on the S-function, and the tracking performance of the time-varying system is better than the improved normalized LMS algorithms. The algorithm put forward in this paper not only overcomes the contradiction between the signal's error and step factor, but also makes the algorithm more flexible by introducing new controllable variable.
        Number of references:        25
        Main heading:        Membership functions
        Controlled terms:        Algorithms - Identification (control systems) - Religious buildings - Time varying systems
        Uncontrolled terms:        Convergence rates - Least mean square algorithms - LMS algorithms - Normalized LMS - S function - System tracking - Tracking performance - Variable step size
        Classification code:        402.2 Public Buildings - 731.1 Control Systems - 921 Mathematics
        Database:        Compendex
                Compilation and indexing terms, © 2016 Elsevier Inc.
2楼2016-05-24 15:10:24
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

mingze0108

铜虫 (小有名气)

3楼2016-05-24 15:43:07
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 mingze0108 的主题更新
信息提示
请填处理意见