| 查看: 870 | 回复: 1 | ||
| 【悬赏金币】回答本帖问题,作者blairwu将赠送您 10 个金币 | ||
blairwu铜虫 (小有名气)
|
[求助]
电子商务 个性化推荐 方向投稿交流
|
|
|
各位大神,本文现在刚刚写完了一篇英文文章,是关于电子商务网站用户个性化推荐的文章。想投稿一篇sci期刊,不知道诸位有没有审稿周期快,录用可能性高的相关期刊推荐。个人感觉投稿 “IEEE Transactions on Knowledge And Data Engineering”期刊难度稍大,不知道有没有合适的期刊推荐以下。拜托诸位了!!! 文章名称 Predicting E-Commerce Users’ Visiting Paths Based on All-kth Markov Model Considering Browse Time 摘要 Accurate prediction of users’ visiting paths is critical for e-commerce companies to improve the performance of their recommendation systems. Prior research has adopted many features of users’ past behaviors in building models for predicting their future visiting paths, but has overlooked one important parameter, namely, users’ browse time. This paper proposes a prediction model that incorporates users’ browse time for the sake of improved prediction accuracy. Users’ browse time is split into several segments by adopting the top-v nearest splitting time segments to analyze users’ next visiting path. We build an all-kth Markov model incorporating browse time to predict users’ visiting paths. Prediction accuracy of this model improves as order (i.e., k) increases and reaches the peak value when k is from 5 to 7. Incorporating browse time into the all-kth Markov improves its performance in predicting users’ visiting behaviors, by decreasing the mean absolute error of prediction from 3.45 to 3.19. Further, we analyze the relationships between the number of splitting time segments and the number of adopting time segments. A case based on 300,000 users of a famous e-commerce website in China suggests that there is a power relationship between the number of the optimal adopting time segments and the number of splitting time segment. These findings have important implications for customer behavior analysis theory and practice. |
» 猜你喜欢
所感
已经有3人回复
要不要辞职读博?
已经有7人回复
不自信的我
已经有11人回复
北核录用
已经有3人回复
实验室接单子
已经有3人回复
磺酰氟产物,毕不了业了!
已经有8人回复
求助:我三月中下旬出站,青基依托单位怎么办?
已经有10人回复
26申博(荧光探针方向,有机合成)
已经有4人回复
论文终于录用啦!满足毕业条件了
已经有26人回复
2026年机械制造与材料应用国际会议 (ICMMMA 2026)
已经有4人回复

keppelsue
新虫 (正式写手)
- 应助: 2 (幼儿园)
- 金币: 1471.9
- 散金: 2409
- 红花: 3
- 帖子: 631
- 在线: 160.7小时
- 虫号: 2637783
- 注册: 2013-09-05
- 性别: GG
- 专业: 计算机应用技术
2楼2016-05-03 21:58:48












回复此楼
可以试下knowledge-based system 吧