24小时热门版块排行榜    

查看: 5170  |  回复: 36
【奖励】 本帖被评价30次,作者Gank-lose增加金币 23.8
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

Gank-lose

铜虫 (小有名气)


[资源] 量子点界的网红:III-IV族量子点(InP)

前两天和朋友聊天过程中,无意间发现今年各类杂志上关于InP的文章如雨后春笋般涌现。当之无愧可以称为量子点界的网红。InP QDs的各种优势已经在上一篇相关分享中列出(InP量子点合成相关文献总结与分析)。总结为一句话:InP是最有可能取代含Cd量子点而走向应用的材料。
首先从近期CM上的一篇综述开始。专门针对InP材料的综述很少见,最近更新的这篇综述较为全面的介绍了InP量子点的研究进展。
量子点界的网红:III-IV族量子点(InP)
Chemically synthesized InP nanocrystals (NCs) are drawing a large interest as a potentially less toxic alternative to CdSe-based nanocrystals. With a bulk band gap of 1.35 eV and an exciton Bohr radius of ~10 nm the emission wavelength of InP NCs can in principle be tuned throughout the whole visible and near-infrared range by changing their size. Furthermore, a few works reported fluorescence quantum yields exceeding 70% after overcoating the core NCs with appropriate shell materials. Therefore, InP NCs arevery promising for use in lighting and display applications. On the other hand, a number of challenges remain to be addressed in order to progress from isolated research results to robust and reproducible synthesis methods for high quality InP NCs. First of all, the size distribution of the as-synthesized NCs needs to be reduced, which directly translates into more narrow emission line widths. Next, reliable protocols are required for achieving a given emission wavelength at high reaction yield and for further improving the emission efficiency and chemical and photostability. Advances in these directions have been hampered for a long time by the specific properties of InP, such as the rather covalent nature of binding implying harsh synthesis conditions, high sensitivity toward oxidation, and limited choice of phosphorus precursors. However, in recent years a much better understanding of the precursor conversion kinetics and reaction mechanisms has been achieved, giving this field new impulse. In this review we provide a comprehensive overview from initial synthetic approaches to the most recent developments. First, we highlight the fundamental differences in the syntheses of InP-based NCs with respect to established II–VI and IV–VI semiconductor NCs comparing their nucleation and growth stages. Next, we inspect in detail the influence of the nature of the phosphorus and indium precursors used and of reaction additives, such as zinc carboxylates or alkylamines, on the properties of the NCs. Finally, core/shell systems and doped InP NCs are discussed, and perspectives in this field are given.
量子点界的网红:III-IV族量子点(InP)-1
文中首先介绍了InP QDs合成方法的发展历程以及反应机理。紧接着介绍经典的成核与生长机理。基本发展过程和基本机理介绍完成后,作者分类总结了P 前体、In前体、配体以及添加剂在InP QDs合成中的作用。除了单纯的InPQDs的合成,文中后半部分重点介绍InP/ZnS核壳结构量子点的合成和InP的掺杂。

量子点界的网红:III-IV族量子点(InP)-2
Wet chemical synthesis of covalent III-V colloidal quantum dots (CQDs) has been challenging because of uncontrolled surfaces and a poor understanding of surface–ligand interactions. We report a simple acid-free approach to synthesize highly crystalline indium phosphide CQDs in the unique tetrahedral shape by using tris(dimethylamino) phosphine and indium trichloride as the phosphorus and indium precursors, dissolved in oleylamine. Our chemical analyses indicate that both the oleylamine and chloride ligands participate in the stabilization of tetrahedral-shaped InP CQDs covered with cation-rich (111) facets. Based on density functional theory calculations, we propose that fractional dangling electrons of the In-rich (111) surface could be completely passivated by three halide and one primary amine ligands per the (2×2) surface unit, satisfying the 8-electron rule. This halide–amine co-passivation strategy will benefit the synthesis of stable III-V CQDs with controlled surfaces.
量子点界的网红:III-IV族量子点(InP)-3
这篇Angewande首次报道合成出四面体InP量子点。有关量子点形貌调控的文献很多,但很少涉及InP。本文通过Cl和胺这两种配体的协同作用,成功合成出四面体InP量子点,尺寸在10nm左右。通读全文,发现该文的亮点并不在形貌的控制。首先文中只是合成出这一种形貌的InP,其次没有考察其成核与生长过程,机理解释也较为简单。个人觉得亮点在于无酸体系的引入,实现了较厚ZnS层的生长,从而提高InP/ZnS的稳定性。已有多篇文献报道在有酸存在的合成体系中,无论是单纯的InP Core量子点,还是InP/ZnS核壳量子点,都会有部分InP被氧化,从而阻碍InP的生长和包壳。本文选择以InCl3作为铟源,Cl和油胺作为配体,避免了羧酸盐和羧酸的使用,从而没有InPOx的生成。通过此方法,最终可以在InP表面生长近2nm的ZnS,从而提高材料的稳定性。

上面这篇文献通过抑制InP氧化从而实现ZnS的有效成壳。InP/ZnS核壳量子点难以合成的另外一个原因是两者的晶格参数相差大。解决晶格失配的方法有两种:一是引入过渡层;二是形成合金。下面这篇文献中,作者合成出InZnPx合金,通过控制Zn的含量,可以实现晶格参数的调控。
量子点界的网红:III-IV族量子点(InP)-4
Colloidal quantum dots (QDs) show great promise as LED phosphors due to their tunable narrow-band emission and ability to produce high-quality white light. Currently, the most suitable QDs for lighting applications are based on cadmium, which presents a toxicity problem for consumer applications. The most promising cadmium-free candidate QDs are based on InP, but their quality lags much behind that of cadmium based QDs. This is not only because the synthesis of InP QDs is more challenging than that of Cd-based QDs, but also because the large lattice parameter of InP makes it difficult to grow an epitaxial, defect-free shell on top of such material. Here, we propose a viable approach to overcome this problem by alloying InP nanocrystals with Zn2+ ions, which enables the synthesis of InxZnyP alloy QDs having lattice constant that can be tuned from 5.93 Å (pure InP QDs) down to 5.39 Å by simply varying the concentration of the Zn precursor. This lattice engineering allows for subsequent strain-free, epitaxial growth of a ZnSezS1–z shell with lattice parameters matching that of the core. We demonstrate, for a wide range of core and shell compositions (i.e., varying x, y, and z), that the photoluminescence quantum yield is maximal (up to 60%) when lattice mismatch is minimal.
量子点界的网红:III-IV族量子点(InP)-5
在包壳时,同样可以通过调节S的含量来控制ZnSeSx晶格参数。最终,作者将量子产率与核壳晶格匹配度关联(如下图),发现晶格匹配度越高,其QY越高。
量子点界的网红:III-IV族量子点(InP)-6


量子点界的网红:III-IV族量子点(InP)-7
Magic-sized nanoclusters have been implicated as mechanistically relevant intermediates in the synthesis of group III-V quantum dots. Herein we report the single-crystal X-ray diffraction structure of a carboxylate-ligated indium phosphide magic-sized nanocluster at 0.83 Å resolution. The structure of this cluster, In37P20(O2CR)51, deviates from that of known crystal phases and possesses a non-stoichiometric, charged core composed of a series of fused 6-membered rings. The cluster is completely passivated by bidentate carboxylate ligands exhibiting predominantly bridging binding modes. The absorption spectrum of the cluster shows an asymmetric line shape that is broader than what would be expected from a homogeneous sample. A combination of computational and experimental evidence suggests that the spectral line width is a result of multiple, discrete electronic transitions that couple to vibrations of the nanocrystal lattice. The product of reaction of this nanocluster with 1 equiv of water has also been structurally characterized, demonstrating site selectivity without a drastic alteration of electronic structure.
量子点界的网红:III-IV族量子点(InP)-8
这篇JACs的亮点在于对InP Cluster的表征。文章来自于Cossairt课题组。该课题组做了大量关于InP合成方面的工作。在InP量子点合成过程中,Cluster的形成似乎不可避免,甚至可以粗浅将Cluster理解为一种中间态。本文通过单晶衍射,仔细研究了InPCluster的结构,发现其由六圆环组成,组成并非严格化学计量比。综合实验结果与理论计算,文中提出Cluster的宽半半峰宽来自晶格震动。

另外在附几篇文献在附件。
回复此楼

» 本帖附件资源列表

» 收录本帖的淘贴专辑推荐

纳米技术与能源及模拟 精华网帖收集 量子点 合成(杂七杂八)
前沿论文 能源资源相关 量子点 学术
qled

» 猜你喜欢

» 本主题相关商家推荐: (我也要在这里推广)

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

★★★★★ 五星级,优秀推荐

Thank you Very much
7楼2016-04-22 11:31:20
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 Gank-lose 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
最具人气热帖推荐 [查看全部] 作者 回/看 最后发表
[找工作] 江西双非一本和四川双一流高校如何选择? 5+6 寒山敲钟 2024-06-12 18/900 2024-06-14 12:49 by GavinKing
[基金申请] 博后面上今天有bug可以看到是否资助? +19 lyfbangong 2024-06-12 30/1500 2024-06-14 12:30 by Yanchong
[基金申请] 国自然基金公布的时候基金号有吗 +8 潇洒怡惜 2024-06-13 11/550 2024-06-14 11:24 by JRfei
[基金申请] 有没有机械的前辈分享一下评上海优都是什么成果啊 +6 wulala800 2024-06-10 6/300 2024-06-14 11:19 by kyois8782
[教师之家] 能在两广找到什么工作呢 +9 yrliao12 2024-06-08 21/1050 2024-06-14 10:29 by 我是勇敢牛牛
[论文投稿] 返修送审后第3天,只有原来的一个审稿人接受了审稿,其他两个有没有可能跑路? 60+5 huanpo116 2024-06-08 9/450 2024-06-14 10:01 by bobvan
[基金申请] 2024国社科通讯评审 +4 qsd10086 2024-06-13 5/250 2024-06-14 09:59 by kevinllsliu
[论文投稿] 投了一篇4区的SCI,审稿人一个拒稿,一个小修,编辑给了大修。 +6 安稳22123 2024-06-13 7/350 2024-06-14 09:57 by xubo7
[找工作] 杭电、天津科技、青农和宁波工程学院如何选? +4 味道很好啊 2024-06-13 4/200 2024-06-14 09:05 by forever411
[基金申请] 什么时候会评呢? +8 qq632458 2024-06-07 10/500 2024-06-14 00:58 by wangting_nju
[硕博家园] 竟然失眠了 +8 zmr8 2024-06-09 8/400 2024-06-13 20:52 by 鱼翔浅底1
[硕博家园] 科研求助 +5 杲www 2024-06-12 6/300 2024-06-13 16:16 by 姓李名明
[基金申请] C口食品 +6 好好不过分 2024-06-09 19/950 2024-06-13 12:26 by zydemon525
[考研] 物理化学一对一辅导 +3 林大diao 2024-06-12 4/200 2024-06-13 08:09 by 化院大男孩
[基金申请] 请问评审专家医学口今年函审是哪天结束的? +5 hyzs6688 2024-06-08 19/950 2024-06-13 06:33 by hyzs6688
[硕博家园] 申博 +3 悦悦小小鱼 2024-06-12 3/150 2024-06-12 15:11 by chen5805
[教师之家] 难上的课安排给我,杂事安排给我。评优时我就没份儿了,即便我做得不比绝大多数人差 +15 河西夜郎 2024-06-08 15/750 2024-06-12 12:51 by oooooo?o
[论文投稿] 计算机类,请问eswa与kbs哪个相对来说容易一些啊? +3 chenrui2015 2024-06-08 4/200 2024-06-11 13:37 by p-cloud
[论文投稿] water research状态咨询 5+3 Flyyawa 2024-06-10 6/300 2024-06-11 09:45 by bobvan
[论文投稿] 审稿交流 +5 huyugan123 2024-06-08 7/350 2024-06-10 10:51 by huyugan123
信息提示
请填处理意见