24小时热门版块排行榜    

查看: 290  |  回复: 2
本帖产生 1 个 ,点击这里进行查看

laomao10521

木虫 (小有名气)

[求助] 帮忙看看文章是否被检索

文章:Mean-square Practical Stability for Stochastic System with Additive Noise Controlled by Optimal Feedback
是否检索

发自小木虫Android客户端
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

baiyuefei

版主 (文学泰斗)

风雪

优秀版主优秀版主优秀版主文献杰出贡献优秀版主优秀版主优秀版主文献杰出贡献优秀版主优秀版主优秀版主优秀版主文献杰出贡献优秀版主优秀版主优秀版主优秀版主优秀版主优秀版主

【答案】应助回帖

★ ★ ★ ★ ★ ★ ★ ★ ★ ★
感谢参与,应助指数 +1
laomao10521(lazy锦溪代发): 金币+10, 协助结帖,感谢应助! 2016-04-23 12:39:51
lazy锦溪: LS-EPI+1, 感谢应助! 2016-04-23 12:39:56
ccession number:       
20161402188589
        Title:        Mean-square practical stability for uncertain stochastic system with additive noise controlled by optimal feedback
        Authors:        Mao, Dong-Hui1 Email author iheartmay@163.com; Fang, Yang-Wang1 Email author ywfang2008@sohu.com; Yang, Peng-Fei1 Email author pfyang1988@126.com; Wu, You-Li1 Email author wu-youli2014@163.com; Yong, Xiao-Ju1 Email author xjyong1987@163.com
        Author affiliation:        1 Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi'an, China
        Corresponding author:        Mao, Dong-Hui (iheartmay@163.com)
        Source title:        Optik
        Abbreviated source title:        Optik
        Volume:        127
        Issue:        13
        Issue date:        July 2016
        Publication year:        2016
        Pages:        5334-5340
        Language:        English
        ISSN:        00304026
        Document type:        Journal article (JA)
        Publisher:        Elsevier GmbH
        Abstract:        Stability concepts addressed in the framework of Lyapunov are not suitable to analyze the stability of stochastic systems with additive noise since it has no equilibrium. The mean-square practical stability is introduced to study the stability of uncertain stochastic systems with additive noise controlled by linear-quadratic optimal feedback. By using Lyapunov functional methods and the comparison principle, criteria on mean-square practical stability of stochastic systems with partially known uncertainties and norm-bounded parameter uncertainties are deduced, respectively. Some numerical examples and simulations are given to illustrate the validity of the theoretical analysis. © 2016 Elsevier GmbH. All rights reserved.
        Number of references:        14
        Main heading:        Additive noise
        Controlled terms:        Lyapunov functions - Numerical methods - Quadratic programming - Stability - Stability criteria - Stochastic systems - System stability
        Uncontrolled terms:        Comparison principle - Linear quadratic - Lyapunov functional method - Norm bounded parameter uncertainty - Optimal Feedback - Practical stability - Stability concepts - Uncertain stochastic systems
        Classification code:        703 Electric Circuits - 921 Mathematics - 921.6 Numerical Methods - 961 Systems Science
        DOI:        10.1016/j.ijleo.2016.02.068
        Database:        Compendex
                Compilation and indexing terms, © 2016 Elsevier Inc.
2楼2016-04-19 12:29:15
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

laomao10521

木虫 (小有名气)

3楼2016-04-19 13:29:49
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 laomao10521 的主题更新
信息提示
请填处理意见