| 查看: 290 | 回复: 2 | ||
| 本帖产生 1 个 ,点击这里进行查看 | ||
laomao10521木虫 (小有名气)
|
[求助]
帮忙看看文章是否被检索
|
|
|
文章:Mean-square Practical Stability for Stochastic System with Additive Noise Controlled by Optimal Feedback 是否检索 发自小木虫Android客户端 |
» 猜你喜欢
国自然申请面上模板最新2026版出了吗?
已经有7人回复
常年博士招收(双一流,工科)
已经有4人回复
推荐一本书
已经有10人回复
纳米粒子粒径的测量
已经有6人回复
溴的反应液脱色
已经有4人回复
参与限项
已经有5人回复
有没有人能给点建议
已经有5人回复
假如你的研究生提出不合理要求
已经有12人回复
萌生出自己或许不适合搞科研的想法,现在跑or等等看?
已经有4人回复
Materials Today Chemistry审稿周期
已经有4人回复
baiyuefei
版主 (文学泰斗)
风雪
- 应助: 4642 (副教授)
- 贵宾: 46.969
- 金币: 658150
- 散金: 11616
- 红花: 995
- 沙发: 81
- 帖子: 69385
- 在线: 13285.8小时
- 虫号: 676696
- 注册: 2008-12-18
- 性别: GG
- 专业: 合成药物化学
- 管辖: 有机交流
【答案】应助回帖
★ ★ ★ ★ ★ ★ ★ ★ ★ ★
感谢参与,应助指数 +1
laomao10521(lazy锦溪代发): 金币+10, 协助结帖,感谢应助! 2016-04-23 12:39:51
lazy锦溪: LS-EPI+1, 感谢应助! 2016-04-23 12:39:56
感谢参与,应助指数 +1
laomao10521(lazy锦溪代发): 金币+10, 协助结帖,感谢应助! 2016-04-23 12:39:51
lazy锦溪: LS-EPI+1, 感谢应助! 2016-04-23 12:39:56
|
ccession number: 20161402188589 Title: Mean-square practical stability for uncertain stochastic system with additive noise controlled by optimal feedback Authors: Mao, Dong-Hui1 Email author iheartmay@163.com; Fang, Yang-Wang1 Email author ywfang2008@sohu.com; Yang, Peng-Fei1 Email author pfyang1988@126.com; Wu, You-Li1 Email author wu-youli2014@163.com; Yong, Xiao-Ju1 Email author xjyong1987@163.com Author affiliation: 1 Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi'an, China Corresponding author: Mao, Dong-Hui (iheartmay@163.com) Source title: Optik Abbreviated source title: Optik Volume: 127 Issue: 13 Issue date: July 2016 Publication year: 2016 Pages: 5334-5340 Language: English ISSN: 00304026 Document type: Journal article (JA) Publisher: Elsevier GmbH Abstract: Stability concepts addressed in the framework of Lyapunov are not suitable to analyze the stability of stochastic systems with additive noise since it has no equilibrium. The mean-square practical stability is introduced to study the stability of uncertain stochastic systems with additive noise controlled by linear-quadratic optimal feedback. By using Lyapunov functional methods and the comparison principle, criteria on mean-square practical stability of stochastic systems with partially known uncertainties and norm-bounded parameter uncertainties are deduced, respectively. Some numerical examples and simulations are given to illustrate the validity of the theoretical analysis. © 2016 Elsevier GmbH. All rights reserved. Number of references: 14 Main heading: Additive noise Controlled terms: Lyapunov functions - Numerical methods - Quadratic programming - Stability - Stability criteria - Stochastic systems - System stability Uncontrolled terms: Comparison principle - Linear quadratic - Lyapunov functional method - Norm bounded parameter uncertainty - Optimal Feedback - Practical stability - Stability concepts - Uncertain stochastic systems Classification code: 703 Electric Circuits - 921 Mathematics - 921.6 Numerical Methods - 961 Systems Science DOI: 10.1016/j.ijleo.2016.02.068 Database: Compendex Compilation and indexing terms, © 2016 Elsevier Inc. |
2楼2016-04-19 12:29:15
laomao10521
木虫 (小有名气)
- 应助: 0 (幼儿园)
- 金币: 3568.5
- 帖子: 129
- 在线: 27.4小时
- 虫号: 2800782
- 注册: 2013-11-14
- 性别: GG
- 专业: 认知心理学
3楼2016-04-19 13:29:49












回复此楼