| 查看: 320 | 回复: 2 | ||||||||||
| 本帖产生 1 个 ,点击这里进行查看 | ||||||||||
miller5356金虫 (小有名气)
|
[求助]
基于改进离散粒子群算法的传感器优化配置
|
|||||||||
帮忙查查收录信息,谢谢! [ 发自手机版 https://muchong.com/3g ] |
» 猜你喜欢
职称评审没过,求安慰
已经有49人回复
26申博自荐
已经有3人回复
A期刊撤稿
已经有4人回复
垃圾破二本职称评审标准
已经有17人回复
投稿Elsevier的Neoplasia杂志,到最后选publishing options时页面空白,不能完成投稿
已经有22人回复
EST投稿状态问题
已经有7人回复
毕业后当辅导员了,天天各种学生超烦
已经有4人回复
三无产品还有机会吗
已经有6人回复

baiyuefei
版主 (文学泰斗)
风雪
- 应助: 4642 (副教授)
- 贵宾: 46.969
- 金币: 657988
- 散金: 11616
- 红花: 995
- 沙发: 81
- 帖子: 69378
- 在线: 13275.4小时
- 虫号: 676696
- 注册: 2008-12-18
- 性别: GG
- 专业: 合成药物化学
- 管辖: 有机交流
3楼2016-03-30 12:52:06
baiyuefei
版主 (文学泰斗)
风雪
- 应助: 4642 (副教授)
- 贵宾: 46.969
- 金币: 657988
- 散金: 11616
- 红花: 995
- 沙发: 81
- 帖子: 69378
- 在线: 13275.4小时
- 虫号: 676696
- 注册: 2008-12-18
- 性别: GG
- 专业: 合成药物化学
- 管辖: 有机交流
【答案】应助回帖
★ ★ ★ ★ ★
感谢参与,应助指数 +1
miller5356: 金币+5, ★★★★★最佳答案 2016-03-30 17:45:48
lazy锦溪: LS-EPI+1, 感谢应助! 2016-03-30 17:51:21
感谢参与,应助指数 +1
miller5356: 金币+5, ★★★★★最佳答案 2016-03-30 17:45:48
lazy锦溪: LS-EPI+1, 感谢应助! 2016-03-30 17:51:21
|
Accession number: 20160501878231 Title: Optimal sensor placement based on improved discrete PSO algorithm Authors: Ma, Ling1 ; Li, Hai-Jun1 ; Wang, Cheng-Gang2 ; Li, Guo-Feng3 Author affiliation: 1Department of Weapon Science and Technology, Naval Aeronautical and Astronautical University, Yantai; Shandong, China 2Department of Basic Experiment, Naval Aeronautical and Astronautical University, Yantai; Shandong, China 3Brigade of Missile Technique, PLA No.92154 Troops, Yantai; Shandong, China Source title: Tien Tzu Hsueh Pao/Acta Electronica Sinica Abbreviated source title: Tien Tzu Hsueh Pao Volume: 43 Issue: 12 Issue date: December 1, 2015 Publication year: 2015 Pages: 2408-2413 Language: Chinese ISSN: 03722112 CODEN: TTHPAG Document type: Journal article (JA) Publisher: Chinese Institute of Electronics Abstract: Optimal sensor placement is foundation and guarantee for design of (Prognostics and Health Management, PHM) system for avionics. The fault-sensor dependency matrix is improved which considers the failure probability of the sensors firstly. Based on this, the constraint optimization model is established and the improved discrete PSO algorithm is used to solve the problem. The algorithm designs the fitness function by the characteristics of optimal sensor placement, and the inertia weight is adjusted adaptively based on the swarm's premature degree which can avoid algorithm limits to local extremum and accelerate the convergence speed. The simulation examples demonstrate that the proposed method is effective, and the optimization results meet all the testability index requirements of system, and it can provide effective direction to the optimal sensor placement of PHM system for avionics. © 2015, Chinese Institute of Electronics. All right reserved. Number of references: 9 Main heading: Optimization Controlled terms: Algorithms - Avionics - Constrained optimization - Particle swarm optimization (PSO) - Testing Uncontrolled terms: Constraint optimizations - Failure Probability - Fitness functions - Optimal sensor placement - Prognostics and health managements - PSO algorithms - Simulation example - Testability Classification code: 715 Electronic Equipment, General Purpose and Industrial - 921.5 Optimization Techniques - 961 Systems Science DOI: 10.3969/j.issn.0372-2112.2015.12.010 Database: Compendex |
2楼2016-03-30 12:51:52













回复此楼