| 查看: 1290 | 回复: 15 | ||
| 【奖励】 本帖被评价11次,作者pkusiyuan增加金币 8.8 个 | ||
[资源]
Poromechanics
|
||
|
Contents Preface xi Acknowledgements xiii 1 Deformation and Kinematics. Mass Balance 1 1.1 The Porous Medium and the Continuum Approach . . . . . . . . . . . . . 1 1.1.1 Connected and Occluded Porosity. The Matrix . . . . . . . . . . . 1 1.1.2 Skeleton and Fluid Particles. Continuity Hypothesis . . . . . . . . 2 1.2 The Skeleton Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Deformation Gradient and Transport Formulae . . . . . . . . . . . 2 1.2.2 Eulerian and Lagrangian Porosities. Void Ratio . . . . . . . . . . 5 1.2.3 Strain Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Infinitesimal Transformation and the Linearized Strain Tensor . . 7 1.3 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Particle Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 Strain Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Mass Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.1 Equation of Continuity . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.2 The Relative Flow Vector of a Fluid Mass. Filtration Vector. Fluid Mass Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Advanced Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.1 Particle Derivative with a Surface of Discontinuity . . . . . . . . 14 1.5.2 Mass Balance with a Surface of Discontinuity. The Rankine– Hugoniot Jump Condition . . . . . . . . . . . . . . . . . . . . . . 15 1.5.3 Mass Balance and the Double Porosity Network . . . . . . . . . . 17 2 Momentum Balance. Stress Tensor 19 2.1 Momentum Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1 The Hypothesis of Local Forces . . . . . . . . . . . . . . . . . . . 19 2.1.2 TheMomentum Balance . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.3 The Dynamic Theorem. . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 The Stress Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Action–Reaction Law . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 The Tetrahedron Lemma and the Cauchy Stress Tensor . . . . . . 22 vi CONTENTS 2.3 Equation ofMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 The Local Dynamic Resultant Theorem. . . . . . . . . . . . . . . 24 2.3.2 The Dynamic Moment Theorem and the Symmetry of the Stress Tensor . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.3 Partial Stress Tensor . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Kinetic Energy Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.1 StrainWork Rates . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.2 Piola–Kirchhoff Stress Tensor . . . . . . . . . . . . . . . . . . . . 29 2.4.3 Kinetic Energy Theorem . . . . . . . . . . . . . . . . . . . . . . . 29 2.5 Advanced Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.1 The Stress Partition Theorem . . . . . . . . . . . . . . . . . . . . 30 2.5.2 Momentum Balance and the Double Porosity Network . . . . . . 32 2.5.3 The Tortuosity Effect . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Thermodynamics 37 3.1 Thermostatics of Homogeneous Fluids . . . . . . . . . . . . . . . . . . . 37 3.1.1 Energy Conservation and Entropy Balance . . . . . . . . . . . . . 37 3.1.2 Fluid State Equations. Gibbs Potential . . . . . . . . . . . . . . . 39 3.2 Thermodynamics of Porous Continua . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Postulate of Local State . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.2 The First Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.3 The Second Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 Conduction Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.1 Darcy’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.2 Fourier’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4 Constitutive Equations of the Skeleton . . . . . . . . . . . . . . . . . . . 51 3.4.1 State Equations of the Skeleton . . . . . . . . . . . . . . . . . . . 51 3.4.2 Complementary Evolution Laws . . . . . . . . . . . . . . . . . . . 54 3.5 Recapitulating the Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.6 Advanced Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.6.1 Fluid Particle Head. Bernoulli Theorem. . . . . . . . . . . . . . . 59 3.6.2 Thermodynamics and the Double Porosity Network . . . . . . . . 60 3.6.3 Chemically Active Porous Continua . . . . . . . . . . . . . . . . . 61 4 Thermoporoelasticity 71 4.1 Non-linear Thermoporoelastic Skeleton . . . . . . . . . . . . . . . . . . . 71 4.1.1 Infinitesimal Transformation and State Equations . . . . . . . . . 71 4.1.2 Tangent Thermoporoelastic Properties . . . . . . . . . . . . . . . . 73 4.1.3 The Incompressible Matrix and the Effective Stress . . . . . . . . 74 4.2 Linear Thermoporoelastic Skeleton . . . . . . . . . . . . . . . . . . . . . 75 4.2.1 Linear Thermoporoelasticity . . . . . . . . . . . . . . . . . . . . . 75 4.2.2 Isotropic Linear Thermoporoelasticity . . . . . . . . . . . . . . . . 75 4.2.3 Relations Between Skeleton and Matrix Properties . . . . . . . . . 78 4.2.4 Anisotropic Poroelasticity . . . . . . . . . . . . . . . . . . . . . . 81 4.3 Thermoporoelastic Porous Material . . . . . . . . . . . . . . . . . . . . . 84 4.3.1 Constitutive Equations of the Saturating Fluid . . . . . . . . . . . 84 4.3.2 Constitutive Equations of the Porous Material . . . . . . . . . . . 84 CONTENTS vii 4.4 Advanced Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.4.1 Non-linear Isotropic Poroelasticity . . . . . . . . . . . . . . . . . 87 4.4.2 Brittle Fracture of Fluid-infiltrated Materials . . . . . . . . . . . . 93 4.4.3 From Poroelasticity to the Swelling of Colloidal Mixtures . . . . . 98 4.4.4 From Poroelasticity to Chemoelasticity and Ageing Materials . . . 108 5 Problems of Poroelasticity 113 5.1 Linearized Poroelasticity Problems . . . . . . . . . . . . . . . . . . . . . 113 5.1.1 The Hypothesis of Small Perturbations . . . . . . . . . . . . . . . 113 5.1.2 Field Equations and Boundary Conditions . . . . . . . . . . . . . 115 5.1.3 The Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . 116 5.2 Solved Problems of Poroelasticity . . . . . . . . . . . . . . . . . . . . . . 117 5.2.1 Injection of a Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.2.2 Consolidation of a Soil Layer . . . . . . . . . . . . . . . . . . . . 125 5.2.3 Drilling of a Borehole . . . . . . . . . . . . . . . . . . . . . . . . 129 5.3 Thermoporoelasticity Problems . . . . . . . . . . . . . . . . . . . . . . . 133 5.3.1 Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.3.2 Half-space Subjected to a Change in Temperature . . . . . . . . . 135 5.4 Advanced Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.4.1 Uniqueness of Solution . . . . . . . . . . . . . . . . . . . . . . . 137 5.4.2 The Beltrami–Michell Equations . . . . . . . . . . . . . . . . . . 140 5.4.3 Mandel’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.4.4 Non-linear Sedimentation . . . . . . . . . . . . . . . . . . . . . . 145 6 Unsaturated Thermoporoelasticity 151 6.1 Mass andMomentum Balance . . . . . . . . . . . . . . . . . . . . . . . . 151 6.1.1 Partial Porosities and Degree of Saturation . . . . . . . . . . . . . 151 6.1.2 Mass andMomentum Balance . . . . . . . . . . . . . . . . . . . . 152 6.1.3 Mass and Momentum Balance with Phase Change . . . . . . . . . 152 6.2 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.2.1 Energy and Entropy Balance for the Porous Material . . . . . . . 153 6.2.2 Skeleton State Equations. Averaged Fluid Pressure and Capillary Pressure . . . . . . . . . . . . . . . . . . . . . . . . 154 6.2.3 Thermodynamics of Porous Media with Phase Change . . . . . . 156 6.3 Capillary Pressure Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.3.1 Energy Approach to the Capillary Pressure Curve . . . . . . . . . 157 6.3.2 Capillary Pressure, Natural Imbibition and Isotherm of Sorption . 160 6.4 Unsaturated Thermoporoelastic Constitutive Equations . . . . . . . . . . . 162 6.4.1 Energy Separation and the Equivalent Pore Pressure Concept . . . 162 6.4.2 Equivalent Pore Pressure and Averaged Fluid Pressure . . . . . . 163 6.4.3 Equivalent Pore Pressure and Thermoporoelastic Constitutive Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.4.4 Equivalent Pore Pressure, Wetting and Free Swelling ofMaterials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.5 Heat and Mass Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.5.1 Fourier’s Law, Thermal Equation and Phase Change . . . . . . . 167 6.5.2 Darcy’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 6.5.3 Fick’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 viii CONTENTS 6.6 Advanced Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.6.1 The Stress Partition Theorem in the Unsaturated Case . . . . . . . 171 6.6.2 Capillary Hysteresis. Porosimetry . . . . . . . . . . . . . . . . . . 174 6.6.3 Capillary Pressure Curve, Deformation and Equivalent Pore Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 6.6.4 Isothermal Drying of Weakly Permeable Materials . . . . . . . . . 180 7 Penetration Fronts 189 7.1 Dissolution Fronts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.1.1 Mass Balance and Fick’s Law for the Solute . . . . . . . . . . . . 190 7.1.2 Instantaneous Dissolution and the Formation of a Penetration Front . . . . . . . . . . . . . . . . . . . . . . . . 191 7.1.3 Stefan-like Problem . . . . . . . . . . . . . . . . . . . . . . . . . 192 7.2 Solute Penetration with Non-linear Binding . . . . . . . . . . . . . . . . . 194 7.2.1 The Binding Process and the Formation of a Penetration Front . . 194 7.2.2 The Time Lag and the Diffusion Test . . . . . . . . . . . . . . . . 197 7.3 IonicMigration with Non-linear Binding . . . . . . . . . . . . . . . . . . 200 7.3.1 Ionic Migration in the Advection Approximation . . . . . . . . . . 200 7.3.2 The Travelling Wave Solution . . . . . . . . . . . . . . . . . . . . 202 7.3.3 The Time Lag and theMigration Test . . . . . . . . . . . . . . . 205 7.4 Advanced Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 7.4.1 Stefan-like Problem with Non-instantaneous Dissolution . . . . . . 209 7.4.2 Imbibition Front . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 7.4.3 Surfaces of Discontinuity and Wave Propagation . . . . . . . . . . 218 8 Poroplasticity 225 8.1 Poroplastic Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 8.1.1 Plastic Strain and Plastic Porosity . . . . . . . . . . . . . . . . . . 225 8.1.2 Poroplastic State Equations for the Skeleton . . . . . . . . . . . . 226 8.1.3 Poroplastic State Equations for the Porous Material . . . . . . . . 227 8.1.4 Domain of Poroelasticity and the Loading Function. Ideal and Hardening PoroplasticMaterial . . . . . . . . . . . . . . 229 8.2 Ideal Poroplasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 8.2.1 The Flow Rule and the PlasticWork . . . . . . . . . . . . . . . . 230 8.2.2 Principle of Maximal Plastic Work and the Flow Rule. Standard and Non-standardMaterials . . . . . . . . . . . . . . . . . . . . . 231 8.3 Hardening Poroplasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 8.3.1 Hardening Variables and Trapped Energy . . . . . . . . . . . . . . 233 8.3.2 Flow Rule for the Hardening Material. Hardening Modulus . . . . 234 8.4 UsualModels of Poroplasticity . . . . . . . . . . . . . . . . . . . . . . . 237 8.4.1 Poroplastic Effective Stress . . . . . . . . . . . . . . . . . . . . . 237 8.4.2 Isotropic and Kinematic Hardening . . . . . . . . . . . . . . . . . 237 8.4.3 The Usual Cohesive–Frictional Poroplastic Model . . . . . . . . . 238 8.4.4 The Cam–ClayModel . . . . . . . . . . . . . . . . . . . . . . . . 244 8.5 Advanced Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 8.5.1 Uniqueness of Solution . . . . . . . . . . . . . . . . . . . . . . . 248 8.5.2 Limit Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 CONTENTS ix 8.5.3 Thermal and Chemical Hardening . . . . . . . . . . . . . . . . . . 252 8.5.4 Localization of Deformation . . . . . . . . . . . . . . . . . . . . . 256 9 Poroviscoelasticity 261 9.1 Poroviscoelastic Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 261 9.1.1 Viscous Strain and Viscous Porosity . . . . . . . . . . . . . . . . 261 9.1.2 Poroviscoelastic State Equations for the Skeleton . . . . . . . . . 262 9.1.3 Complementary Evolution Laws . . . . . . . . . . . . . . . . . . . 263 9.2 Functional Approach to Linear Poroviscoelasticity . . . . . . . . . . . . . 263 9.2.1 Creep Test. Instantaneous and Relaxed Properties. The Trapped Energy . . . . . . . . . . . . . . . . . . . . . . . . . 263 9.2.2 Creep and Relaxation Functions . . . . . . . . . . . . . . . . . . . 265 9.2.3 Poroviscoelastic Properties and Constituent Properties . . . . . . . 268 9.3 Primary and Secondary Consolidation . . . . . . . . . . . . . . . . . . . . 269 9.4 Advanced Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 9.4.1 Poroviscoplasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 272 9.4.2 Functional Approach to the Thermodynamics of Poroviscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . 274 A Differential Operators 279 A.1 Orthonormal Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . 279 A.2 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 A.3 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Bibliography 285 Index 293 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Poromechanics.pdf
2016-03-17 22:42:53, 4.33 M
» 本帖已获得的红花(最新10朵)
» 猜你喜欢
求助裂变径迹
已经有0人回复
澳门大学机器人与自主系统硕士项目
已经有2人回复
地质学论文润色/翻译怎么收费?
已经有100人回复
南京大学能源与资源学院马朝阳课题组 博士后招聘
已经有30人回复
调剂 西南科技大学 环资学院
已经有4人回复
» 本主题相关价值贴推荐,对您同样有帮助:
投了业内最顶级的期刊,被批的一无是处,还要再投么?
已经有1人回复
多孔介质力学英文经典教材和近年的几篇论文【转载】
已经有32人回复
求2004年的一本书"Poromechanics"
已经有3人回复
有人搞petromechanics的吗?
已经有7人回复
简单回复
怪叔叔推倒你2楼
2016-05-15 16:48
回复
五星好评 顶一下,感谢分享!
luozhu33楼
2016-07-01 17:38
回复
五星好评 顶一下,感谢分享!
chygwn4楼
2016-10-11 10:53
回复
五星好评 顶一下,感谢分享!
chygwn5楼
2016-10-11 10:53
回复
顶
chygwn6楼
2016-11-17 17:14
回复
顶一下,感谢分享!
1992ylt7楼
2016-12-30 22:48
回复
五星好评 顶一下,感谢分享!
1992ylt8楼
2016-12-30 22:52
回复
顶一下,感谢分享!
2017-07-04 21:33
回复
五星好评 顶一下,感谢分享!
SUIBIAN199010楼
2017-08-20 13:42
回复
五星好评 顶一下,感谢分享!
南四湖201011楼
2017-11-18 19:26
回复
五星好评 顶一下,感谢分享!
曼巴蛇12楼
2018-06-19 15:33
回复
五星好评 顶一下,感谢分享!
lhyeven13楼
2018-10-29 16:59
回复
五星好评 顶一下,感谢分享!
sdd240314楼
2020-04-26 21:08
回复
五星好评 顶一下,感谢分享!
Youngxl15楼
2022-05-20 00:17
回复
Youngxl16楼
2022-05-20 00:18
回复
五星好评 bd 发自小木虫Android客户端














回复此楼
Youngxl