| 查看: 3247 | 回复: 22 | |||||
| 【奖励】 本帖被评价17次,作者longchenkun增加金币 13.6 个 | |||||
[资源]
An Introduction to Applied Statistical Thermodynamics
|
|||||
|
书名:An Introduction to Applied Statistical Thermodynamics 作者:Stanley I. Sandler 目录: Table of Contents 1. Introduction to Statistical Thermodynamics. 1.1 Probabistic Description. 1.2 Macrostates and Microstates. 1.3 Quantum Mechanics Description of Microstates. 1.4 The Postulates of Statistical Mechanics. 1.5 The Boltzmann Energy Distribution. 2. The Canonical Partition Function. 2.1 Some Properties of the Canonical Partition Function. 2.2 Relationship of the Canonical Partition Function to Thermodynamic Properties. 2.3 Canonical Partition Function for a Molecule with Several Independent Energy Modes. 2.4 Canonical Partition Function for a Collection of Noninteracting Identical Atoms. Problems. 3. The Ideal Monatomic Gas. 3.1 Canonical Partition Function for the Ideal Monatomic Gas. 3.2 Identification of b as 1/kT. 3.3 General Relationships of the Canonical Partition Function to Other Thermodynamic Quantities. 3.4 The Thermodynamic Properties of the Ideal Monatomic Gas. 3.5 Energy Fluctuations in the Canonical Ensemble. 3.6 The Gibbs Entropy Equation. 3.7 Translational State Degeneracy. 3.8 Distinguishability, Indistinguishability and the Gibbs' Paradox. 3.9 A Classical Mechanics – Quantum Mechanics Comparison: The Maxwell-Boltzmann Distribution of Velocities. Problems. 4. Ideal Polyatomic Gas. 4.1 The Partition Function for an Ideal Diatomic Gas. 4.2 The Thermodynamic Properties of the Ideal Diatomic Gas. 4.3 The Partition Function for an Ideal Polyatomic Gas. 4.4 The Thermodynamic Properties of an Ideal Polyatomic Gas. 4.5 The Heat Capacities of Ideal Gases. 4.6 Normal Mode Analysis: the Vibrations of a Linear Triatomic Molecule. Problems. 5. Chemical Reactions in Ideal Gases. 5.1 The Non-Reacting Ideal Gas Mixture. 5.2 Partition Function of a Reacting Ideal Chemical Mixture. 5.3 Three Different Derivations of the Chemical Equilibrium Constant in an Ideal Gas Mixture. 5.4 Fluctuations in a Chemically Reacting System. 5.5 The Chemically Reacting Gas Mixture. The General Case. 5.6 An Example. The Ionization of Argon. Problems. 6. Other Partition Functions. 6.1 The Microcanonical Ensemble. 6.2 The Grand Canonical Ensemble. 6.3 The Isobaric-Isothermal Ensemble. 6.4 The Restricted Grand or Semi Grand Canonical Ensemble. 6.5 Comments on the Use of Different Ensembles. Problems. 7. Interacting Molecules in a Gas. 7.1 The Configuration Integral. 7.2 Thermodynamic Properties from the Configuration Integral. 7.3 The Pairwise Additivity Assumption. 7.4 Mayer Cluster Function and Irreducible Integrals. 7.5 The Virial Equation of State. 7.6 The Virial Equation of State for Polyatomic Molecules. 7.7 Thermodynamic Properties from the Virial Equation of State. 7.8 Derivation of Virial Coefficient Formulae from the Grand Canonical Ensemble. 7.9 Range of Applicability of the Virial Equation. Problems. 8. Intermolecular Potentials and the Evaluation of the Second Virial Coefficient. 8.1 Interaction Potentials for Spherical Molecules. 8.2 Interaction Potentials Between Unlike Atoms. 8.3 Interaction Potentials for Nonspherical Molecules. 8.4 Engineering Applications/Implications of the Virial Equation of State. Problems. 9. Monatomic Crystals. 9.1 The Einstein Model of a Crystal. 9.2 The Debye Model of a Crystal. 9.3 Test of the Einstein and Debye Models for a Crystal. 9.4 Sublimation Pressures of Crystals. 9.5 A Comment of the Third Law of Thermodynamics. Problems. 10. Simple Lattice Models of Fluids. 10.1 Introduction. 10.2 Development of Equations of State from Lattice Theory. 10.3 Activity Coefficient Models for Similar Size Molecules from Lattice Theory. 10.4 Flory-Huggins and Other Models for Polymer Systems. 10.5 The Ising Model. Problems. 11. Interacting Molecules in a Dense Fluid. Configurational Distribution Functions. 11.1 Reduced Spatial Probability Density Functions. 11.2 Thermodynamic Properties from the Pair Correlation Function. 11.3 The Pair Correlation Function (Radial Distribution Function) at Low Density. 11.4 Methods of Determination of the Pair Correlation Function at High Density 11.5 Fluctuations in the Number of Particles and the Compressibility Equation 11.6 Determination of the Radial Distribution Function of Fluids using Coherent X-ray or Neutron Scattering. 11.7 Determination of the Radial Distribution Functions of Molecular Liquids. 11.8 Determination of the Coordination Number from the Radial Distribution Function. 11.9 Determination of the Radial Distribution Function of Colloids and Proteins. Problems. 12. Integral Equation Theories for the Radial Distribution Function. 12.1 The Potential of Mean Force. 12.2 The Kirkwood Superposition Approximation. 12.3 The Ornstein-Zernike Equation. 12.4 Closures for the Ornstein-Zernike Equation. 12.5 The Percus-Yevick Equation of State. 12.6 The Radial Distribution Function and Thermodynamic Properties of Mixtures. 12.7 The Potential of Mean Force. 12.8 Osmotic Pressure and the Potential of Mean Force for Protein and Colloidal Solutions. Problems. 13. Computer Simulation. 13.1 Introduction to Molecular Level Simulation. 13.2 Thermodynamic Properties from Molecular Simulation. 13.3 Monte Carlo Simulation. 13.4 Molecular Dynamics Simulation. Problems. 14. Perturbation Theory. 14.1 Perturbation Theory for the Square-Well Potential. 14.2 First Order Barker-Henderson Perturbation Theory. 14.3 Second Order Perturbation Theory. 14.4 Perturbation Theory Using Other Potentials. 14.5 Engineering Applications of Perturbation Theory. Problems. 15. Debye-Hückel Theory of Electrolyte Solutions. 15.1 Solutions Containing Ions (and electrons). 15.2 Debye-Hückel Theory. 15.3 The Mean Ionic Activity Coefficient. Problems. 16. The Derivation of Thermodynamic Models from the Generalized van der Waals Partition Function. 16.1 The Statistical Mechanical Background. 16.2 Application of the Generalized van der Waals Partition Function to Pure Fluids. 16.3 Equation of State for Mixtures from the Generalized van der Waals Partition Function. 16.4 Activity Coefficient Models from the Generalized van der Waals Partition Function. 16.5 Chain Molecules and Polymers. 16.6 Hydrogen-bonding and Associating Fluids. Problems. |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : An_Introduction_to_Applied_Statistical_Thermodynamics.zip.001
- 附件 2 : An_Introduction_to_Applied_Statistical_Thermodynamics.zip.002
2015-12-01 05:08:45, 50 M
2015-12-01 05:10:40, 16.14 M
» 收录本帖的淘帖专辑推荐
书籍文献 | 对我有用的资源 | 数学与物理 |
» 猜你喜欢
生物医用材料分类与典型应用介绍
已经有0人回复
二苯甲酮亚胺的合成
已经有1人回复
有机高分子材料论文润色/翻译怎么收费?
已经有239人回复
聚左旋乳酸的作用与机制:从胶原再生到组织修复
已经有0人回复
可生物降解聚酯聚己内酯的性能分析与发展趋势
已经有0人回复
带膜支架的膜和支架之间的结合力如何测试
已经有2人回复
西交利物浦大学奖学金博士招生(生物传感或机器学习方向)
已经有1人回复
南方科技大学招收金属材料方向博士生
已经有23人回复
可降解聚酯材料在医疗器械中的应用趋势与创新方向
已经有0人回复
可降解微球如何提升药物精准治疗效果
已经有0人回复
静电纺丝膜分层问题
已经有0人回复
12楼2017-01-12 04:22:35
13楼2017-01-12 04:23:48
15楼2017-07-12 04:09:53
9楼2016-08-26 09:07:05
10楼2016-08-27 19:19:00
|
本帖内容被屏蔽 |
18楼2018-03-30 15:08:27
22楼2020-10-17 13:13:50
简单回复
aust_jhe2楼
2015-12-02 06:11
回复
五星好评 顶一下,感谢分享!
lchq19573楼
2015-12-02 09:07
回复
五星好评 顶一下,感谢分享!
lwg34楼
2015-12-02 16:19
回复
五星好评 顶一下,感谢分享!
Quan.5楼
2015-12-04 05:56
回复
五星好评 顶一下,感谢分享!
2015-12-04 14:42
回复
五星好评 顶一下,感谢分享!
2015-12-15 21:15
回复
五星好评 顶一下,感谢分享!
2016-07-06 10:17
回复
五星好评 顶一下,感谢分享!
ychf813011楼
2016-11-26 08:42
回复
五星好评 顶一下,感谢分享!
yaokara14楼
2017-04-18 09:32
回复
五星好评 顶一下,感谢分享!
lchq195716楼
2017-07-14 22:26
回复
顶一下,感谢分享!
神机军师17楼
2017-09-19 10:24
回复
五星好评 顶一下,感谢分享!
wangth092119楼
2018-05-11 19:49
回复
五星好评 顶一下,感谢分享!
planck122920楼
2018-09-23 17:10
回复
五星好评 顶一下,感谢分享!
chemhz21楼
2018-11-06 22:13
回复
五星好评 顶一下,感谢分享!
cathy_uw23楼
2020-12-28 07:49
回复
五星好评 顶一下,感谢分享!













回复此楼
