| 查看: 2981 | 回复: 37 | ||||
| 【奖励】 本帖被评价32次,作者pkusiyuan增加金币 25.4 个 | ||||
[资源]
Computational Electromagnetics for RF and Microwave Engineering
|
||||
|
Preface to the second edition page xv Preface to the first edition xvii Acknowledgements xxi To the reader xxiii List of notation xxiv 1 An overview of computational electromagnetics for RF and microwave applications 1 1.1 Introduction 1 1.2 Full-wave CEM techniques 3 1.3 The method of moments (MoM) 8 1.4 The finite difference time domain (FDTD) method 10 1.5 The finite element method (FEM) 13 1.6 Other methods 16 1.6.1 Transmission line matrix (TLM) method 16 1.6.2 The method of lines (MoL) 17 1.6.3 The generalized multipole technique (GMT) 17 1.7 The CEM modelling process 17 1.8 Verification and validation 19 1.8.1 An example: a frequency selective surface 20 1.9 Convergence and extrapolation 23 1.10 Extending the limits of full-wave CEM methods 24 1.11 CEM: the future 25 1.12 A “road map” of this book 28 References 29 2 The finite difference time domain method: a one-dimensional introduction 32 David B. Davidson and James T. Aberle 2.1 Introduction 32 2.2 An overview of finite differences 33 2.2.1 Partial differential equations 33 2.2.2 The basic solution procedure 34 2.2.3 Approximating derivatives using finite differences 34 viii Contents 2.3 A very brief history of the FDTD 36 2.4 A one-dimensional introduction to the FDTD 37 2.4.1 A one-dimensional model problem: a lossless transmission line 37 2.4.2 FDTD solution of the one-dimensional lossless transmission line problem 40 2.4.3 Accuracy, convergence, consistency and stability of the method 46 2.5 Obtaining wideband data using the FDTD 52 2.5.1 The Gaussian pulse 52 2.5.2 The Gaussian derivative pulse 54 2.5.3 A polynomial pulse 54 2.5.4 The 1D transmission line revisited from a wideband perspective 57 2.5.5 Estimating the Fourier transform 60 2.5.6 Simulation using Gaussian and Gaussian derivative pulses 62 2.6 Numerical dispersion in FDTD simulations 64 2.6.1 Dispersion 64 2.6.2 Derivation of the dispersion equation 66 2.6.3 Some closing comments on dispersion in FDTD grids 67 2.7 The Courant stability criterion derived by von Neumann analysis 69 2.8 Conclusion 71 References 71 Problems and assignments 72 3 The finite difference time domain method in two and three dimensions 74 3.1 Introduction 74 3.2 The 2D FDTD algorithm 74 3.2.1 Electromagnetic scattering problems 75 3.2.2 The TEz formulation 75 3.2.3 Including a source: the scattered/total field formulation 79 3.2.4 Meshing the scatterer 81 3.2.5 Absorbing boundary conditions 82 3.2.6 Developing the simulator 84 3.2.7 FDTD analysis of TE scattering from a PEC cylinder 91 3.2.8 Computational aspects 96 3.3 The PML absorbing boundary condition 97 3.3.1 An historical perspective 97 3.3.2 A numerical absorber – pre-Berenger 99 3.3.3 Berenger’s split field PML formulation 101 3.3.4 The FDTD update equations for a PML 102 3.3.5 PML implementation issues 104 3.3.6 Results for a split field PML 105 3.3.7 Drawbacks of the Berenger PML 106 3.3.8 Uniaxial absorber theory 107 3.3.9 Stretched coordinate theory 108 Contents ix 3.3.10 Further reading on PMLs 108 3.3.11 Conclusions on the PML 109 3.4 The 3D FDTD algorithm 109 3.4.1 The Yee cell in 3D 110 3.4.2 An application: determining the resonant frequencies of a PEC cavity 114 3.4.3 Dispersion in two and three dimensions 115 3.5 Commercial implementations 117 3.5.1 An introductory example – a waveguide “through” 118 3.5.2 A waveguide filter 120 3.5.3 A microstrip patch antenna 121 3.6 Further reading 124 3.7 Conclusions 125 References 126 Problems and assignments 127 4 A one-dimensional introduction to the method of moments: modelling thin wires and infinite cylinders 130 4.1 Introduction 130 4.2 An electrostatic example 131 4.2.1 Some simplifying approximations 132 4.2.2 Approximating the charge 133 4.2.3 Collocation 134 4.2.4 Solving the system of linear equations 135 4.2.5 Results and discussion 136 4.3 Thin-wire electrodynamics and the MoM 137 4.3.1 The electrically thin dipole 137 4.3.2 A caveat regarding thin-wire formulations 144 4.4 More on basis functions 144 4.4.1 The numerical electromagnetic code (NEC) – method of moments 144 4.4.2 NEC basis functions 145 4.4.3 Piecewise linear basis functions 147 4.4.4 Junction treatments with piecewise linear basis functions 147 4.5 The method of weighted residuals 150 4.6 Scattering from infinite cylinders 152 4.6.1 General derivation of surface integral equation operators 153 4.6.2 The EFIE for TM scattering 154 4.6.3 MoM solution of EFIE for TM scattering 155 4.6.4 Coding in MATLAB for right circular PEC cylinder 157 4.6.5 Post-processing: echo width and radar cross-section 157 4.6.6 Discussion, and the Fredholm alternative 159 4.7 Further reading 160 4.8 Conclusions 162 x Contents References 162 Problems and assignments 164 5 The application of the FEKO and NEC-2 codes to thin-wire antenna modelling 166 5.1 Introduction 166 5.2 An introductory example: the dipole 168 5.3 A wire antenna array: the Yagi–Uda antenna 172 5.4 A log-periodic antenna 177 5.5 An axial mode helix antenna 185 5.6 A Wu–King loaded dipole 193 5.7 Conclusions 199 References 199 6 The method of moments for surface modelling 201 6.1 Electric and magnetic field integral equations 201 6.2 The Rao–Wilton–Glisson (RWG) element 203 6.3 A mixed potential electric field integral equation for electromagnetic scattering by surfaces of arbitrary shape 206 6.3.1 The electric field integral equation (EFIE) 206 6.3.2 The RWG basis function revisited 207 6.3.3 The MoM formulation 208 6.3.4 Derivation of the matrix entries 210 6.3.5 Numerical approximation of the matrix entries 211 6.3.6 Coding issues 214 6.3.7 Verification 215 6.3.8 Discussion 217 6.4 Some examples of surface modelling 218 6.4.1 Scattering from a sphere 218 6.4.2 The analytical solution 222 6.5 Modelling homogeneous material bodies using equivalent currents 224 6.6 Scattering from a dielectric sphere 226 6.7 Computational implications of surface and volume modelling with the MoM 228 6.8 Hybrid MoM/asymptotic techniques for large problems 230 6.8.1 Introduction 230 6.8.2 Moment method/asymptotic hybrids 231 6.8.3 Physical optics and MoM hybridization 231 6.8.4 A FEKO example using the MoM/PO hybrid 234 6.9 Other approaches for the solution of electromagnetically large problems 237 6.9.1 Background 237 6.9.2 High-performance computing 238 6.9.3 FFT-based methods 248 6.9.4 The fast multipole method 251 Contents xi 6.10 Further reading 258 6.11 Concluding comments 260 References 260 Problem 263 7 The method of moments and stratified media: theory 264 7.1 Introduction 264 7.2 Dyadic Green functions: some introductory notes 264 7.3 A static example of a stratified medium problem: the grounded dielectric slab 266 7.4 The Sommerfeld potentials 269 7.4.1 A brief revision of potential theory 269 7.4.2 The Sommerfeld potentials 270 7.4.3 An example: derivation of Gxx A for single-layer microstrip 273 7.4.4 The scalar potential and the mixed potential integral equation 276 7.4.5 Surface waves 277 7.5 Evaluating the Sommerfeld integrals 278 7.5.1 Approximate evaluation of the Sommerfeld integrals 278 7.5.2 Numerical integration in the spectral domain 279 7.5.3 Locating the pole 287 7.5.4 General source locations 288 7.5.5 Some results for the Sommerfeld potentials 289 7.6 MoM solution using the Sommerfeld potentials 289 7.7 Further reading 297 References 298 Assignments 299 8 The method of moments and stratified media: practical applications of a commercial code 300 8.1 Printed antenna and microstrip technology: a brief review 300 8.2 A simple patch antenna 301 8.3 Mutual coupling between microstrip antennas 303 8.4 An array with “scan blindness” 308 8.5 A concluding discussion of stratified media formulations 314 References 315 9 A one-dimensional introduction to the finite element method 317 9.1 Introduction 317 9.2 The variational boundary value problem: the transmission line problem revisited 318 9.2.1 The model problem 319 9.2.2 The equivalent variational functional 320 xii Contents 9.2.3 The finite element approximation of the functional 321 9.2.4 Evaluating the elemental matrices 323 9.2.5 Assembling the system 325 9.2.6 Rendering the functional stationary and solving the problem 327 9.2.7 Coding the FEM 328 9.2.8 Results and rate of convergence 329 9.3 Improving and generalizing the FEM solution 331 9.3.1 Higher-order elements 331 9.3.2 More general boundary conditions 337 9.4 Further reading 339 9.5 Conclusions 340 References 340 Problems and assignments 341 10 The finite element method in two dimensions: scalar and vector elements 342 10.1 Introduction 342 10.2 Finite element solution of the Laplace equation in two dimensions using scalar elements 343 10.2.1 The variational boundary value problem approach 343 10.2.2 Some practical issues: assembling the system 349 10.2.3 An application to microstrip 352 10.2.4 More on variational functionals 355 10.2.5 The Poisson equation: incorporating a source term 358 10.2.6 Discussion 358 10.3 The Galerkin (weighted residual) formulation 359 10.4 Simplex coordinates 364 10.4.1 Simplex coordinates in one, two and three dimensions 365 10.4.2 Some properties of simplex coordinates 366 10.5 The high-frequency variational functional 367 10.6 The null space of the curl operator and spurious modes 367 10.7 Vector (edge) elements 371 10.7.1 An historical perspective 371 10.7.2 Theory of vector elements 372 10.7.3 Vector elements on triangles – the Whitney element 374 10.8 Application to waveguide eigenvalue analysis 378 10.8.1 The two-dimensional variational functional for an homogeneous waveguide 378 10.8.2 Explicit formula for the elemental matrix entries 379 10.8.3 Coding 382 10.8.4 Results 386 10.8.5 Degenerate modes 389 10.8.6 Higher-order vector elements 391 10.9 Waveguide dispersion analysis 394 Contents xiii 10.9.1 A vector formulation based on the transverse and axial field components 394 10.9.2 The cut-off eigenanalysis formulation 396 10.9.3 Homogeneously filled guides: TE modes only 397 10.9.4 Eigensolution 398 10.9.5 Results: a half-filled dielectric loaded rectangular waveguide 398 10.9.6 Alternate formulations for inhomogeneously loaded waveguides 400 10.10 Further reading 400 10.11 Conclusions 402 References 403 Problems and assignments 406 11 The finite element method in three dimensions 407 11.1 The three-dimensional Whitney element 407 11.1.1 Explicit formula for the tetrahedral elemental matrix entries 408 11.1.2 Coding 411 11.2 Higher-order elements 415 11.2.1 Complete versus mixed-order elements 416 11.2.2 Hierarchal vector basis functions 416 11.2.3 Properties of hierarchal basis functions 419 11.2.4 Practical impact of higher-order basis functions in an FEM code 421 11.3 The FEM from the variational boundary value problem viewpoint 427 11.4 A deterministic 3D application: waveguide obstacle analysis 429 11.4.1 Introduction 429 11.4.2 The waveguide formulation 430 11.5 Application to two waveguide discontinuity problems 432 11.5.1 Application to a Magic-T 432 11.5.2 Application to a capacitive iris 436 11.6 Open-region finite element method formulations: absorbing boundary conditions (ABCs) 441 11.6.1 Formulation in terms of the scattered field 442 11.6.2 Formulation in terms of the total field 443 11.6.3 Discussion 444 11.7 Further reading 444 11.8 Conclusions 445 References 445 Problems and assignments 448 12 A selection of more advanced topics in full-wave computational electromagnetics 451 12.1 Hybrid finite element/method of moments formulations 451 12.1.1 Introduction 451 12.1.2 Theoretical background 452 12.2 An application of the FEM/MoM hybrid – GSM base stations 454 xiv Contents 12.2.1 Applications of FEM/MoM hybrid formulations 454 12.2.2 Human exposure assessment near GSM base stations 455 12.3 Time domain FEM 457 12.3.1 Basic formulation and implementation 458 12.3.2 Preliminary results 461 12.3.3 The FDTD as a special case of the FETD 464 12.3.4 Hybrid FDTD/FETD schemes 468 12.4 Sparse matrix solvers 468 12.4.1 Profile-in skyline storage 469 12.4.2 Compressed row storage 470 12.4.3 Implementation of matrix solution using these storage schemes 471 12.4.4 Results for sparse storage schemes 471 12.5 A posteriori error estimation and adaptive meshing 473 12.5.1 Explicit, residual-based error estimators 474 12.5.2 An example of the application of an error estimator 476 12.6 Further reading and conclusions 478 References 481 Appendix A: The Whitney element 484 Appendix B: The Newmark-β time-stepping algorithm 486 References 488 Appendix C: On the convergence of the MoM 489 Reference 490 Appendix D: Useful formulas for simplex coordinates 491 Appendix E: Web resources 493 Appendix F: MATLAB files supporting this text 496 Index 498 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Computational_Electromagnetics_for_RF_and_Microwave_Engineering_-_David_B._Davidson_-_(_Cambridge_University_Press_-_2nd_Ed.2011_(1°Ed.2005)_-_pp.532).pdf
2015-09-16 11:13:17, 3.39 M
» 收录本帖的淘帖专辑推荐
计算数学与经济统计 | 资源 |
» 猜你喜欢
导师想让我从独立一作变成了共一第一
已经有9人回复
博士读完未来一定会好吗
已经有23人回复
到新单位后,换了新的研究方向,没有团队,持续积累2区以上论文,能申请到面上吗
已经有11人回复
读博
已经有4人回复
JMPT 期刊投稿流程
已经有4人回复
心脉受损
已经有5人回复
Springer期刊投稿求助
已经有4人回复
小论文投稿
已经有3人回复
申请2026年博士
已经有6人回复
» 本主题相关价值贴推荐,对您同样有帮助:
电机类可以发表的论文
已经有49人回复
URSIGASS 2014 (IEEE)
已经有1人回复
会议论文征集!!欢迎投稿!!
已经有0人回复
17楼2016-03-23 11:17:55
29楼2018-01-31 17:12:47
31楼2018-05-03 22:19:00
33楼2019-06-26 12:59:03
35楼2020-04-19 14:08:47
简单回复
tonyhi2楼
2015-09-16 16:27
回复
五星好评 顶一下,感谢分享!
ha16683楼
2015-09-17 00:24
回复
五星好评 顶一下,感谢分享!
吠陀4楼
2015-09-17 07:26
回复
五星好评 顶一下,感谢分享!
wjy20115楼
2015-09-17 08:37
回复
五星好评 顶一下,感谢分享!
applaq6楼
2015-09-18 11:29
回复
五星好评 顶一下,感谢分享!
YHW20167楼
2015-10-01 17:34
回复
五星好评 顶一下,感谢分享!
wyj98838楼
2015-11-07 15:47
回复
五星好评 顶一下,感谢分享!
wyj98839楼
2015-11-07 15:56
回复
顶一下,感谢分享!
krll10楼
2015-12-07 09:08
回复
五星好评 顶一下,感谢分享!
hehfei7711楼
2015-12-09 07:41
回复
五星好评 顶一下,感谢分享!
hehfei7712楼
2015-12-09 07:41
回复
顶一下,感谢分享!
New_Praise13楼
2015-12-21 16:57
回复
三星好评 顶一下,感谢分享!
appolloford14楼
2015-12-22 17:41
回复
五星好评 顶一下,感谢分享!
goodluckstf15楼
2016-01-11 20:44
回复
五星好评 顶一下,感谢分享!
tmsqj01716楼
2016-01-20 11:48
回复
五星好评 顶一下,感谢分享!
chen_san18楼
2016-03-23 19:12
回复
五星好评 顶一下,感谢分享!
ybiao19楼
2016-06-02 16:13
回复
五星好评 顶一下,感谢分享!
wjqhccd20楼
2016-09-18 20:04
回复
五星好评 顶一下,感谢分享!
xiaoferr21楼
2016-11-25 19:58
回复
五星好评 顶一下,感谢分享!
yangyouwei22楼
2016-12-29 17:45
回复
五星好评 顶一下,感谢分享!
shgzhang23楼
2017-01-01 15:48
回复
五星好评 顶一下,感谢分享!
nem0198924楼
2017-01-02 21:52
回复
五星好评 顶一下,感谢分享!
lantianbihb25楼
2017-02-25 14:26
回复
五星好评 顶一下,感谢分享!
nanostorm26楼
2017-04-28 09:58
回复
五星好评 顶一下,感谢分享!
sunpixel27楼
2017-04-29 18:02
回复
nanostorm28楼
2017-04-30 10:33
回复
顶一下,感谢分享!
chuhairong30楼
2018-03-29 19:12
回复
五星好评 顶一下,感谢分享!
qhdzch32楼
2019-06-06 10:14
回复
五星好评 顶一下,感谢分享!
zhusiwei34楼
2019-07-27 21:38
回复
五星好评 顶一下,感谢分享!
水木清扬36楼
2020-04-26 11:32
回复
五星好评 顶一下,感谢分享!
ljb19721137楼
2020-07-31 04:06
回复
五星好评 顶一下,感谢分享! 发自小木虫Android客户端
JacpaineChu38楼
2021-07-12 16:20
回复
五星好评 顶一下,感谢分享!













回复此楼