| 查看: 741 | 回复: 17 | ||
| 【奖励】 本帖被评价11次,作者zzg4298增加金币 9.5 个 | ||
| 当前主题已经存档。 | ||
[资源]
【ebook】Handbook of Optical Design, 2nd Edition
|
||
|
Handbook of Optical Design, 2nd Edition Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress. The first edition of this book was published as Handbook of Lens Design (Marcel Dekker, Inc., 1994). ISBN: 0-8247-4613-9 This book is printed on acid-free paper. Headquarters Marcel Dekker, Inc. 270 Madison Avenue, New York, NY 10016 tel: 212-696-9000; fax: 212-685-4540 Eastern Hemisphere Distribution Marcel Dekker AG Hutgasse 4, Postfach 812, CH-4001 Basel, Switzerland tel: 41-61-260-6300; fax: 41-61-260-6333 World Wide Web http://www.dekker.com The publisher offers discounts on this book when ordered in bulk quantities. For more information, write to Special Sales/Professional Marketing at the headquarters address above. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher. Current printing (last digit): 10 9 8 7 6 5 4 3 2 1 PRINTED IN THE UNITED STATES OF AMERICA Preface to the Second Edition The first edition of this book was used by our students in a lens design course for several years. Taking advantage of this experience, this second edition has been greatly improved in several aspects. Most of the material in the original second chapter was considered quite important and useful as a reference. However, to make an introductory course on lens design more fluid and simple, most of the material was transferred to the end of the book as an Appendix. In several other sections the book was also restructured with the same objective in mind. Some of the modifications introduced include the clarification and a more complete explanation of some concepts, as suggested by some readers. Additional material was written, including additional new references to make the book more complete and up to date. We will mention only a few examples. Some gradient index systems are now described with greater detail. The new wavefront representation by means of arrays of gaussians is included. The Delano diagram section was enlarged. More details on astigmatic surfaces with two different curvatures in orthogonal diameters are given. We would like to thank our friends and students who used the previous edition of this book. They provided us with many suggestions and pointed out a few typographical errors to improve the book. Daniel Malacara Zacarias Malacara Contents Preface to the Second Edition Preface to the First Edition 1. Geometrical Optics Principles 1.1 Wave Nature of Light and Fermat’s Principle 1.2 Reflection and Refraction Laws 1.3 Basic Meridional Ray Tracing Equations 1.4 Gaussian or First-Order Optics 1.5 Image Formation 1.6 Stop, Pupils, and Principal Ray 1.7 Optical Sine Theorem 1.8 Herschel Invariant and Image Magnifications 1.9 Ray Aberrations and Wave Aberrations References 2. Thin Lenses and Spherical Mirrors 2.1 Thin Lenses 2.2 Formulas for Image Formation with Thin Lenses 2.3 Nodal Points of a Thin Lens 2.4 Image Formation with Convergent Lenses 2.5 Image Formation with Divergent Lenses References 3. Systems of Several Lenses and Thick Lenses 3.1 Focal Length and Power of a Lens System 3.2 Image Formation with Thick Lenses or Systems of Lenses 3.3 Cardinal Points 3.4 Image Formation with a Tilted or Curved Object 3.5 Thick Lenses 3.6 Systems of Thin Lenses © 2004 by Marcel Dekker, Inc. 3.7 The Lagrange Invariant in a System of Thin Lenses 3.8 Effect of Object or Stop Shifting 3.9 The Delano y–y Diagram References 4. Spherical Aberration 4.1 Spherical Aberration Calculation 4.2 Primary Spherical Aberration 4.3 Aspherical Surfaces 4.4 Spherical Aberration of Aspherical Surfaces 4.5 Surfaces without Spherical Aberration 4.6 Aberration Polynomial for Spherical Aberration 4.7 High-Order Spherical Aberration 4.8 Spherical Aberration Correction with Gradient Index References 5. Monochromatic Off-Axis Aberrations 5.1 Oblique Rays 5.2 Petzval Curvature 5.3 Coma 5.4 Astigmatism 5.5 Distortion 5.6 Off-Axis Aberrations in Aspherical Surfaces 5.7 Aberrations and Wavefront Deformations 5.8 Symmetrical Principle 5.9 Stop Shift Equations References 6. Chromatic Aberrations 6.1 Introduction 6.2 Axial Chromatic Aberration 6.3 Secondary Color Aberration 6.4 Magnification Chromatic Aberration References 7. The Aberration Polynomial 7.1 Wave Aberration Polynomial 7.2 Zernike Polynomials 7.3 Wavefront Representation by an Array of Gaussians 7.4 Transverse Aberration Polynomials References © 2004 by Marcel Dekker, Inc. 8. Diffraction in Optical Systems 8.1 Huygens–Fresnel Theory 8.2 Fresnel Diffraction 8.3 Fraunhofer Diffraction 8.4 Diffraction Images with Aberrations 8.5 Strehl Ratio 8.6 Optical Transfer Function 8.7 Resolution Criteria 8.8 Gaussian Beams References 9. Computer Evaluation of Optical Systems 9.1 Meridional Ray Tracing and Stop Position Analysis 9.2 Spot Diagram 9.3 Wavefront Deformation 9.4 Point and Line Spread Functions 9.5 Optical Transfer Function 9.6 Tolerance to Aberrations References 10. Prisms 10.1 Tunnel Diagram 10.2 Deflecting a Light Beam 10.3 Transforming an Image 10.4 Deflecting and Transforming Prisms 10.5 Nondeflecting Transforming Prisms 10.6 Beam-Splitting Prisms 10.7 Chromatic Dispersing Prisms References 11. Simple Optical Systems and Photographic Lenses 11.1 Optical Systems Diversity 11.2 Single Lens 11.3 Spherical and Paraboloidal Mirrors 11.4 Periscopic Lens 11.5 Achromatic Landscape Lenses 11.6 Achromatic Double Lens 11.7 Some Catoptric and Catadioptric Systems 11.8 Fresnel Lenses and Gabor Plates References © 2004 by Marcel Dekker, Inc. 12. Complex Photographic Lenses 12.1 Introduction 12.2 Asymmetrical Systems 12.3 Symmetrical Anastigmat Systems 12.4 Varifocal and Zoom Lenses References 13. The Human Eye and Ophthalmic Lenses 13.1 The Human Eye 13.2 Ophthalmic Lenses 13.3 Ophthalmic Lens Design 13.4 Prismatic Lenses 13.5 Spherocylindrical Lenses References 14. Astronomical Telescopes 14.1 Resolution and Light Gathering Power 14.2 Catadioptric Cameras 14.3 Newton Telescope 14.4 Reflecting Two-Mirror Telescopes 14.5 Field Correctors 14.6 Catadioptric Telescopes 14.7 Multiple Mirror Telescopes 14.8 Active and Adaptive Optics References 15. Visual Systems, Visual Telescopes, and Afocal Systems 15.1 Visual Optical Systems 15.2 Basic Telescopic System 15.3 Afocal Systems 15.4 Refracting Objectives 15.5 Visual and Terrestrial Telescopes 15.6 Telescope Eyepieces 15.7 Relays and Periscopes References 16. Microscopes 16.1 Compound Microscope 16.2 Microscope Objectives 16.3 Microscope Eyepieces 16.4 Microscope Illuminators References © 2004 by Marcel Dekker, Inc. 17. Projection Systems 17.1 Slide and Movie Projectors 17.2 Coherence Effects in Projectors 17.3 Main Projector Components 17.4 Anamorphic Projection 17.5 Overhead Projectors 17.6 Profile Projectors 17.7 Television Projectors References 18. Lens Design Optimization 18.1 Basic Principles 18.2 Optimization Methods 18.3 Glatzel Adaptive Method 18.4 Constrained Damped Least Squares Optimization Method 18.5 Merit Function and Boundary Conditions 18.6 Modern Trends in Optical Design 18.7 Flow Chart for a Lens Optimization Program 18.8 Lens Design and Evaluation Programs 18.9 Some Commercial Lens Design Programs References Appendix 1. Notation and Primary Aberration Coefficients Summary A1.1 Notation A1.2 Summary of Primary Aberration Coefficients Appendix 2. Mathematical Representation of Optical Surfaces A2.1 Spherical and Aspherical Surfaces References Appendix 3. Optical Materials A3.1 Optical Glasses A3.2 Optical Plastics A3.3 Infrared and Ultraviolet Materials Bibliography Appendix 4. Exact Ray Tracing of Skew Rays A4.1 Exact Ray Tracing A4.2 Summary of Ray Tracing Results © 2004 by Marcel Dekker, Inc. A4.3 Tracing Through Tilted or Decentered Optical Surfaces References Appendix 5. General Bibliography on Lens Design © 2004 下载地址:http://home.imhb.cn/indexCF/home ... spx?MSAutoID=130406 密码:123456 |
» 猜你喜欢
请问有评职称,把科研教学业绩算分排序的高校吗
已经有6人回复
2025冷门绝学什么时候出结果
已经有6人回复
Bioresource Technology期刊,第一次返修的时候被退回好几次了
已经有7人回复
真诚求助:手里的省社科项目结项要求主持人一篇中文核心,有什么渠道能发核心吗
已经有8人回复
寻求一种能扛住强氧化性腐蚀性的容器密封件
已经有5人回复
请问哪里可以有青B申请的本子可以借鉴一下。
已经有4人回复
请问下大家为什么这个铃木偶联几乎不反应呢
已经有5人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有4人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
AI论文写作工具:是科研加速器还是学术作弊器?
已经有3人回复
2楼2008-08-20 15:19:52
4楼2008-08-20 21:53:22
5楼2008-08-21 09:26:56
7楼2008-08-28 11:46:03
8楼2008-08-28 14:25:33
9楼2008-08-29 08:56:10
10楼2008-08-29 10:27:51
11楼2008-08-29 11:39:58
12楼2008-11-19 09:40:04
简单回复
2008-08-20 19:06
回复



2008-08-21 18:08
回复





















回复此楼


