| 查看: 4268 | 回复: 100 | |||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||
[资源]
Advanced.Engineering.Mathematics,.Peter.V.O'Neil,.7ed,.Cengage,.2012
|
|||
|
Contents Preface xi PART 1 Ordinary Differential Equations 1 CHAPTER 1 First-Order Differential Equations 3 1.1 Terminology and Separable Equations 3 1.2 Linear Equations 16 1.3 Exact Equations 21 1.4 Homogeneous, Bernoulli, and Riccati Equations 26 1.4.1 The Homogeneous Differential Equation 26 1.4.2 The Bernoulli Equation 27 1.4.3 The Riccati Equation 28 1.5 Additional Applications 30 1.6 Existence and Uniqueness Questions 40 CHAPTER 2 Linear Second-Order Equations 43 2.1 The Linear Second-Order Equation 43 2.2 The Constant Coefficient Case 50 2.3 The Nonhomogeneous Equation 55 2.3.1 Variation of Parameters 55 2.3.2 Undetermined Coefficients 57 2.3.3 The Principle of Superposition 60 2.4 Spring Motion 61 2.4.1 Unforced Motion 62 2.4.2 Forced Motion 66 2.4.3 Resonance 67 2.4.4 Beats 69 2.4.5 Analogy with an Electrical Circuit 70 2.5 Euler’s Differential Equation 72 CHAPTER 3 The Laplace Transform 77 3.1 Definition and Notation 77 3.2 Solution of Initial Value Problems 81 3.3 Shifting and the Heaviside Function 84 v Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. vi Contents 3.3.1 The First Shifting Theorem 84 3.3.2 The Heaviside Function and Pulses 86 3.3.3 Heaviside’s Formula 93 3.4 Convolution 96 3.5 Impulses and the Delta Function 102 3.6 Solution of Systems 106 3.7 Polynomial Coefficients 112 3.7.1 Differential Equations with Polynomial Coefficients 112 3.7.2 Bessel Functions 114 CHAPTER 4 Series Solutions 121 4.1 Power Series Solutions 121 4.2 Frobenius Solutions 126 CHAPTER 5 Approximation of Solutions 137 5.1 Direction Fields 137 5.2 Euler’s Method 139 5.3 Taylor and Modified Euler Methods 142 PART 2 Vectors, Linear Algebra, and Systems of Linear Differential Equations 145 CHAPTER 6 Vectors and Vector Spaces 147 6.1 Vectors in the Plane and 3-Space 147 6.2 The Dot Product 154 6.3 The Cross Product 159 6.4 The Vector Space Rn 162 6.5 Orthogonalization 175 6.6 Orthogonal Complements and Projections 177 6.7 The Function Space C[a, b] 181 CHAPTER 7 Matrices and Linear Systems 187 7.1 Matrices 187 7.1.1 Matrix Multiplication from Another Perspective 191 7.1.2 Terminology and Special Matrices 192 7.1.3 Random Walks in Crystals 194 7.2 Elementary Row Operations 198 7.3 Reduced Row Echelon Form 203 7.4 Row and Column Spaces 208 7.5 Homogeneous Systems 213 7.6 Nonhomogeneous Systems 220 7.7 Matrix Inverses 226 7.8 Least Squares Vectors and Data Fitting 232 7.9 LU Factorization 237 7.10 Linear Transformations 240 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. Contents vii CHAPTER 8 Determinants 247 8.1 Definition of the Determinant 247 8.2 Evaluation of Determinants I 252 8.3 Evaluation of Determinants II 255 8.4 A Determinant Formula for A−1 259 8.5 Cramer’s Rule 260 8.6 The Matrix Tree Theorem 262 CHAPTER 9 Eigenvalues, Diagonalization, and Special Matrices 267 9.1 Eigenvalues and Eigenvectors 267 9.2 Diagonalization 277 9.3 Some Special Types of Matrices 284 9.3.1 Orthogonal Matrices 284 9.3.2 Unitary Matrices 286 9.3.3 Hermitian and Skew-Hermitian Matrices 288 9.3.4 Quadratic Forms 290 CHAPTER 10 Systems of Linear Differential Equations 295 10.1 Linear Systems 295 10.1.1 The Homogeneous System X =AX. 296 10.1.2 The Nonhomogeneous System 301 10.2 Solution of X =AX for Constant A 302 10.2.1 Solution When A Has a Complex Eigenvalue 306 10.2.2 Solution When A Does Not Have n Linearly Independent Eigenvectors 308 10.3 Solution of X =AX+G 312 10.3.1 Variation of Parameters 312 10.3.2 Solution by Diagonalizing A 314 10.4 Exponential Matrix Solutions 316 10.5 Applications and Illustrations of Techniques 319 10.6 Phase Portraits 329 10.6.1 Classification by Eigenvalues 329 10.6.2 Predator/Prey and Competing Species Models 338 PART 3 Vector Analysis 343 CHAPTER 11 Vector Differential Calculus 345 11.1 Vector Functions of One Variable 345 11.2 Velocity and Curvature 349 11.3 Vector Fields and Streamlines 354 11.4 The Gradient Field 356 11.4.1 Level Surfaces, Tangent Planes, and Normal Lines 359 11.5 Divergence and Curl 362 11.5.1 A Physical Interpretation of Divergence 364 11.5.2 A Physical Interpretation of Curl 365 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. viii Contents CHAPTER 12 Vector Integral Calculus 367 12.1 Line Integrals 367 12.1.1 Line Integral With Respect to Arc Length 372 12.2 Green’s Theorem 374 12.3 An Extension of Green’s Theorem 376 12.4 Independence of Path and Potential Theory 380 12.5 Surface Integrals 388 12.5.1 Normal Vector to a Surface 389 12.5.2 Tangent Plane to a Surface 392 12.5.3 Piecewise Smooth Surfaces 392 12.5.4 Surface Integrals 393 12.6 Applications of Surface Integrals 395 12.6.1 Surface Area 395 12.6.2 Mass and Center of Mass of a Shell 395 12.6.3 Flux of a Fluid Across a Surface 397 12.7 Lifting Green’s Theorem to R3 399 12.8 The Divergence Theorem of Gauss 402 12.8.1 Archimedes’s Principle 404 12.8.2 The Heat Equation 405 12.9 Stokes’s Theorem 408 12.9.1 Potential Theory in 3-Space 410 12.9.2 Maxwell’s Equations 411 12.10 Curvilinear Coordinates 414 PART 4 Fourier Analysis, Special Functions, and Eigenfunction Expansions 425 CHAPTER 13 Fourier Series 427 13.1 Why Fourier Series? 427 13.2 The Fourier Series of a Function 429 13.2.1 Even and Odd Functions 436 13.2.2 The Gibbs Phenomenon 438 13.3 Sine and Cosine Series 441 13.3.1 Cosine Series 441 13.3.2 Sine Series 443 13.4 Integration and Differentiation of Fourier Series 445 13.5 Phase Angle Form 452 13.6 Complex Fourier Series 457 13.7 Filtering of Signals 461 CHAPTER 14 The Fourier Integral and Transforms 465 14.1 The Fourier Integral 465 14.2 Fourier Cosine and Sine Integrals 468 14.3 The Fourier Transform 470 14.3.1 Filtering and the Dirac Delta Function 481 14.3.2 The Windowed Fourier Transform 483 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. Contents ix 14.3.3 The Shannon Sampling Theorem 485 14.3.4 Low-Pass and Bandpass Filters 487 14.4 Fourier Cosine and Sine Transforms 490 14.5 The Discrete Fourier Transform 492 14.5.1 Linearity and Periodicity of the DFT 494 14.5.2 The Inverse N-Point DFT 494 14.5.3 DFT Approximation of Fourier Coefficients 495 14.6 Sampled Fourier Series 498 14.7 DFT Approximation of the Fourier Transform 501 CHAPTER 15 Special Functions and Eigenfunction Expansions 505 15.1 Eigenfunction Expansions 505 15.1.1 Bessel’s Inequality and Parseval’s Theorem 515 15.2 Legendre Polynomials 518 15.2.1 A Generating Function for Legendre Polynomials 521 15.2.2 A Recurrence Relation for Legendre Polynomials 523 15.2.3 Fourier-Legendre Expansions 525 15.2.4 Zeros of Legendre Polynomials 528 15.2.5 Distribution of Charged Particles 530 15.2.6 Some Additional Results 532 15.3 Bessel Functions 533 15.3.1 The Gamma Function 533 15.3.2 Bessel Functions of the First Kind 534 15.3.3 Bessel Functions of the Second Kind 538 15.3.4 Displacement of a Hanging Chain 540 15.3.5 Critical Length of a Rod 542 15.3.6 Modified Bessel Functions 543 15.3.7 Alternating Current and the Skin Effect 546 15.3.8 A Generating Function for Jν(x) 548 15.3.9 Recurrence Relations 549 15.3.10 Zeros of Bessel Functions 550 15.3.11 Fourier-Bessel Expansions 552 15.3.12 Bessel’s Integrals and the Kepler Problem 556 PART 5 Partial Differential Equations 563 CHAPTER 16 The Wave Equation 565 16.1 Derivation of the Wave Equation 565 16.2 Wave Motion on an Interval 567 16.2.1 Zero Initial Velocity 568 16.2.2 Zero Initial Displacement 570 16.2.3 Nonzero Initial Displacement and Velocity 572 16.2.4 Influence of Constants and Initial Conditions 573 16.2.5 Wave Motion with a Forcing Term 575 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. x Contents 16.3 Wave Motion in an Infinite Medium 579 16.4 Wave Motion in a Semi-Infinite Medium 585 16.4.1 Solution by Fourier Sine or Cosine Transform 586 16.5 Laplace Transform Techniques 587 16.6 Characteristics and d’Alembert’s Solution 594 16.6.1 Forward and Backward Waves 596 16.6.2 Forced Wave Motion 599 16.7 Vibrations in a Circular Membrane I 602 16.7.1 Normal Modes of Vibration 604 16.8 Vibrations in a Circular Membrane II 605 16.9 Vibrations in a Rectangular Membrane 608 CHAPTER 17 The Heat Equation 611 17.1 Initial and Boundary Conditions 611 17.2 The Heat Equation on [0, L] 612 17.2.1 Ends Kept at Temperature Zero 612 17.2.2 Insulated Ends 614 17.2.3 Radiating End 615 17.2.4 Transformation of Problems 618 17.2.5 The Heat Equation with a Source Term 619 17.2.6 Effects of Boundary Conditions and Constants 622 17.3 Solutions in an Infinite Medium 626 17.3.1 Problems on the Real Line 626 17.3.2 Solution by Fourier Transform 627 17.3.3 Problems on the Half-Line 629 17.3.4 Solution by Fourier Sine Transform 630 17.4 Laplace Transform Techniques 631 17.5 Heat Conduction in an Infinite Cylinder 636 17.6 Heat Conduction in a Rectangular Plate 638 CHAPTER 18 The Potential Equation 641 18.1 Laplace’s Equation 641 18.2 Dirichlet Problem for a Rectangle 642 18.3 Dirichlet Problem for a Disk 645 18.4 Poisson’s Integral Formula 648 18.5 Dirichlet Problem for Unbounded Regions 649 18.5.1 The Upper Half-Plane 650 18.5.2 The Right Quarter-Plane 652 18.6 A Dirichlet Problem for a Cube 654 18.7 Steady-State Equation for a Sphere 655 18.8 The Neumann Problem 659 18.8.1 A Neumann Problem for a Rectangle 660 18.8.2 A Neumann Problem for a Disk 662 18.8.3 A Neumann Problem for the Upper Half-Plane 664 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. Contents xi PART 6 Complex Functions 667 CHAPTER 19 Complex Numbers and Functions 669 19.1 Geometry and Arithmetic of Complex Numbers 669 19.2 Complex Functions 676 19.2.1 Limits, Continuity, and Differentiability 677 19.2.2 The Cauchy-Riemann Equations 680 19.3 The Exponential and Trigonometric Functions 684 19.4 The Complex Logarithm 689 19.5 Powers 690 CHAPTER 20 Complex Integration 695 20.1 The Integral of a Complex Function 695 20.2 Cauchy’s Theorem 700 20.3 Consequences of Cauchy’s Theorem 703 20.3.1 Independence of Path 703 20.3.2 The Deformation Theorem 704 20.3.3 Cauchy’s Integral Formula 706 20.3.4 Properties of Harmonic Functions 709 20.3.5 Bounds on Derivatives 710 20.3.6 An Extended Deformation Theorem 711 20.3.7 A Variation on Cauchy’s Integral Formula 713 CHAPTER 21 Series Representations of Functions 715 21.1 Power Series 715 21.2 The Laurent Expansion 725 CHAPTER 22 Singularities and the Residue Theorem 729 22.1 Singularities 729 22.2 The Residue Theorem 733 22.3 Evaluation of Real Integrals 740 22.3.1 Rational Functions 740 22.3.2 Rational Functions Times Cosine or Sine 742 22.3.3 Rational Functions of Cosine and Sine 743 22.4 Residues and the Inverse Laplace Transform 746 22.4.1 Diffusion in a Cylinder 748 CHAPTER 23 Conformal Mappings and Applications 751 23.1 Conformal Mappings 751 23.2 Construction of Conformal Mappings 765 23.2.1 The Schwarz-Christoffel Transformation 773 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. xii Contents 23.3 Conformal Mapping Solutions of Dirichlet Problems 776 23.4 Models of Plane Fluid Flow 779 APPENDIX A MAPLE Primer 789 Answers to Selected Problems 801 Index 867 Copyright |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Advanced.Engineering.Mathematics,.Peter.V.ONeil,.7ed,.Cengage,.2012.pdf
2015-05-30 10:14:55, 12 M
» 猜你喜欢
2025冷门绝学什么时候出结果
已经有3人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有4人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
AI论文写作工具:是科研加速器还是学术作弊器?
已经有3人回复
孩子确诊有中度注意力缺陷
已经有6人回复
2026博士申请-功能高分子,水凝胶方向
已经有6人回复
论文投稿,期刊推荐
已经有4人回复
硕士和导师闹得不愉快
已经有13人回复
请问2026国家基金面上项目会启动申2停1吗
已经有5人回复
同一篇文章,用不同账号投稿对编辑决定是否送审有没有影响?
已经有3人回复
97楼2017-10-21 15:21:14
★★★ 三星级,支持鼓励
feixiaolin: 回帖置顶 2015-05-30 10:54:51
2楼2015-05-30 10:54:44
hylpy
专家顾问 (知名作家)
-

专家经验: +2500 - 数学EPI: 7
- 应助: 381 (硕士)
- 贵宾: 0.167
- 金币: 51103.6
- 帖子: 5093
- 在线: 1102.4小时
- 虫号: 3247778
5楼2015-05-30 13:12:43
简单回复
2015-05-30 11:08
回复
五星好评 顶一下,感谢分享!
hylpy4楼
2015-05-30 13:12
回复
五星好评 顶一下,感谢分享!
2015-05-30 15:12
回复
五星好评 顶一下,感谢分享!
askuyue7楼
2015-05-30 21:03
回复
五星好评 顶一下,感谢分享!
applaq8楼
2015-05-31 00:06
回复
五星好评 顶一下,感谢分享!
xcontext9楼
2015-05-31 01:18
回复
五星好评 顶一下,谢谢分享! [ 发自小木虫客户端 ]
yourmoon10楼
2015-05-31 05:07
回复
五星好评 顶一下,感谢分享!
Quan.11楼
2015-05-31 06:01
回复
五星好评 顶一下,感谢分享!
supervb12楼
2015-05-31 07:54
回复
五星好评 顶一下,感谢分享!
m06z51113楼
2015-05-31 09:01
回复
五星好评 顶一下,感谢分享!













回复此楼