24小时热门版块排行榜    

CyRhmU.jpeg
南方科技大学公共卫生及应急管理学院2026级博士研究生招生报考通知(长期有效)
查看: 5923  |  回复: 160
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

yangguanbing

铁杆木虫 (正式写手)


[资源] Chemical Reviews最新鸿篇巨制—碳的同素异形体—79页(引文896篇)

本文主要介绍碳元素的纳米同素异形体
Broad Family of Carbon Nanoallotropes: Classification, Chemistry,
and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene,
Nanodiamonds, and Combined Superstructures
Vasilios Georgakilas,† Jason A. Perman,‡ Jiri Tucek,‡ and Radek Zboril*,‡
†Material Science Department, University of Patras, 26504 Rio Patras, Greece
‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University
in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic

The unique ability of carbon atoms to participate in robust
covalent bonds with other carbon atoms in diverse hybridization
states (sp, sp2, sp3) or with nonmetallic elements enables them to
form a wide range of structures, from small molecules to long
chains. This property underpins the immense importance of
organic chemistry and biochemistry in life. It was two centuries
ago that carbon was first shown to be present in organic
molecules and biomolecules as well as natural carbon materials
such as the various types of amorphous carbon, diamond, and
graphite. Although diamond and graphite both consist
exclusively of carbon atoms, their properties are very different.
Diamond is a transparent electrical insulator and the hardest
known material. Conversely, graphite is a black opaque soft
material with remarkable electrical conductivity. These differences
derive from the way that the carbon atoms are connected in
each case. Diamond consists of tetrahedral sp3 carbon atoms that
form unique large crystals. In contrast, graphite is made up of
stacked graphene monolayers that are held together by van der
Waals interactions. These graphene monolayers consist of sp2
carbon atoms that are packed densely in a two-dimensional
hexagonal lattice.

1. Introduction B
2. Classification of Carbon Nanoallotropes: Structural
Description and Characterization C
2.1. 0D Carbon Nanoallotropes C
2.1.1. Fullerenes and Onion-like Carbon C
2.1.2. Carbon Dots D
2.1.3. Graphene Quantum Dots E
2.1.4. Nanodiamonds F
2.2. 1D Carbon Nanoallotropes F
2.2.1. Carbon Nanotubes and Nanofibers F
2.2.2. Carbon Nanohorns G
2.3. 2D Carbon Nanoallotropes H
2.3.1. Graphene H
2.3.2. Multilayer Graphitic Nanosheets I
2.3.3. Graphene Nanoribbons K
3. Methods for Preparing Carbon Nanostructures K
3.1. 0D Carbon Nanoallotropes K
3.1.1. Fullerenes and Onion-like Carbon K
3.1.2. Carbon Dots L
3.1.3. Graphene Quantum Dots N
3.1.4. Nanodiamonds Q
3.2. 1D Carbon Nanoallotropes R
3.2.1. Carbon Nanotubes and Nanofibers R
3.2.2. Carbon Nanohorns S
3.3. 2D Carbon Nanoallotropes S
3.3.1. Graphene S
3.3.2. Multilayer Graphitic Nanosheets T
3.3.3. Graphene Nanoribbons T
4. Fundamental Physicochemical Properties of Carbon
Nanoallotropes U
4.1. Fundamental Properties of C60 U
4.2. Photoluminescence of Carbon Dots and
Graphene Quantum Dots V
4.3. Fundamental Properties of Nanodiamonds X
4.4. Mechanical Properties of Graphene, Carbon
Nanotubes, and Carbon Nanofibers Y
4.5. Electronic and Related Properties of Graphene,
Graphene Nanoribbons, Carbon
Nanotubes, and Carbon Nanohorns Z
4.6. Magnetic Properties of Carbon Nanoallotropes
AB
4.7. Chemical Reactivity AF
4.7.1. Addition to sp2 Carbon Atoms AG
4.7.2. Reactions at Edges and Defect Sites AG
4.7.3. Noncovalent Surface Interactions AJ
4.7.4. Internal Spaces as Nanoreactors AJ
5. Interconversions of Carbon Nanoallotropes AL
6. Combining Nanoarchitectures To Produce Advanced
Allotropic Hybrids AO
6.1. Fullerene Aggregates AO
6.2. Carbon Clusters AQ
6.3. Assembled Nanostructures Containing Graphene
Quantum Dots AR
6.4. Carbon Nanotubes and 2D Graphene Nanostructures
AS
6.4.1. Transparent Thin Films AT
6.4.2. Conductive Membranes and Papers AT
6.5. Graphenic Hybrid Nanocomposites AU
6.5.1. Graphene−CNT Thin Films AU
6.5.2. Graphene−CNT Membranes AU
6.5.3. Graphene−CNT 3D Hybrids and Pillared
Structures AU
6.6. 3D Graphenic Hybrid Superstructures AW
6.6.1. Aerogels, Nanofoams, and Spongelike
Nanoarchitectures AW
6.6.2. Hollow 3D Microspheres AY
6.7. Nanoreactors Based on Carbon Nanotubes AY
6.8. Nanodiamonds and C60-Functionalized Graphene
and Carbon Nanotubes BA
7. Predicted, Rare, and High-Pressure Carbon Nanoallotrope
Structures BB
8. Summary, Outlook, and Selected Challenging
Applications BJ
Author Information BM
Corresponding Author BM
Notes BM
Biographies BM
Acknowledgments BN
References BN
回复此楼

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com
  • 附件 1 : Broad_Family_of_Carbon_Nanoallotropes碳同素异形体.pdf
  • 2015-05-28 15:16:10, 6.02 M

» 猜你喜欢

» 本主题相关商家推荐: (我也要在这里推广)

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

贴心小茉莉

铁虫 (小有名气)


★★★★★ 五星级,优秀推荐

很实用,谢谢分享
81楼2015-06-01 15:50:02
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 161 个回答
简单回复
lwg32楼
2015-05-28 16:01   回复  
五星好评  顶一下,感谢分享!
sci6053楼
2015-05-28 18:45   回复  
五星好评  顶一下,感谢分享!
jackydai4楼
2015-05-28 19:10   回复  
五星好评  顶一下,感谢分享!
2015-05-28 20:25   回复  
五星好评  顶一下,感谢分享!
2015-05-29 00:39   回复  
五星好评  顶一下,感谢分享!
2015-05-29 08:24   回复  
五星好评  顶一下,感谢分享!
2015-05-29 08:44   回复  
五星好评  顶一下,感谢分享!
李飞明9楼
2015-05-29 09:00   回复  
五星好评  顶一下,感谢分享!
2015-05-29 09:21   回复  
五星好评  顶一下,感谢分享!
100950311楼
2015-05-29 10:18   回复  
五星好评  顶一下,感谢分享!
csm12312楼
2015-05-29 10:21   回复  
五星好评  顶一下,感谢分享!
yzdlc13楼
2015-05-29 11:01   回复  
五星好评  顶一下,感谢分享!
wmc135714楼
2015-05-29 11:15   回复  
五星好评  顶一下,感谢分享!
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见