| 查看: 5923 | 回复: 160 | ||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||
[资源]
Chemical Reviews最新鸿篇巨制—碳的同素异形体—79页(引文896篇)
|
||
|
本文主要介绍碳元素的纳米同素异形体 Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures Vasilios Georgakilas,† Jason A. Perman,‡ Jiri Tucek,‡ and Radek Zboril*,‡ †Material Science Department, University of Patras, 26504 Rio Patras, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17 listopadu 1192/12, 771 46 Olomouc, Czech Republic The unique ability of carbon atoms to participate in robust covalent bonds with other carbon atoms in diverse hybridization states (sp, sp2, sp3) or with nonmetallic elements enables them to form a wide range of structures, from small molecules to long chains. This property underpins the immense importance of organic chemistry and biochemistry in life. It was two centuries ago that carbon was first shown to be present in organic molecules and biomolecules as well as natural carbon materials such as the various types of amorphous carbon, diamond, and graphite. Although diamond and graphite both consist exclusively of carbon atoms, their properties are very different. Diamond is a transparent electrical insulator and the hardest known material. Conversely, graphite is a black opaque soft material with remarkable electrical conductivity. These differences derive from the way that the carbon atoms are connected in each case. Diamond consists of tetrahedral sp3 carbon atoms that form unique large crystals. In contrast, graphite is made up of stacked graphene monolayers that are held together by van der Waals interactions. These graphene monolayers consist of sp2 carbon atoms that are packed densely in a two-dimensional hexagonal lattice. 1. Introduction B 2. Classification of Carbon Nanoallotropes: Structural Description and Characterization C 2.1. 0D Carbon Nanoallotropes C 2.1.1. Fullerenes and Onion-like Carbon C 2.1.2. Carbon Dots D 2.1.3. Graphene Quantum Dots E 2.1.4. Nanodiamonds F 2.2. 1D Carbon Nanoallotropes F 2.2.1. Carbon Nanotubes and Nanofibers F 2.2.2. Carbon Nanohorns G 2.3. 2D Carbon Nanoallotropes H 2.3.1. Graphene H 2.3.2. Multilayer Graphitic Nanosheets I 2.3.3. Graphene Nanoribbons K 3. Methods for Preparing Carbon Nanostructures K 3.1. 0D Carbon Nanoallotropes K 3.1.1. Fullerenes and Onion-like Carbon K 3.1.2. Carbon Dots L 3.1.3. Graphene Quantum Dots N 3.1.4. Nanodiamonds Q 3.2. 1D Carbon Nanoallotropes R 3.2.1. Carbon Nanotubes and Nanofibers R 3.2.2. Carbon Nanohorns S 3.3. 2D Carbon Nanoallotropes S 3.3.1. Graphene S 3.3.2. Multilayer Graphitic Nanosheets T 3.3.3. Graphene Nanoribbons T 4. Fundamental Physicochemical Properties of Carbon Nanoallotropes U 4.1. Fundamental Properties of C60 U 4.2. Photoluminescence of Carbon Dots and Graphene Quantum Dots V 4.3. Fundamental Properties of Nanodiamonds X 4.4. Mechanical Properties of Graphene, Carbon Nanotubes, and Carbon Nanofibers Y 4.5. Electronic and Related Properties of Graphene, Graphene Nanoribbons, Carbon Nanotubes, and Carbon Nanohorns Z 4.6. Magnetic Properties of Carbon Nanoallotropes AB 4.7. Chemical Reactivity AF 4.7.1. Addition to sp2 Carbon Atoms AG 4.7.2. Reactions at Edges and Defect Sites AG 4.7.3. Noncovalent Surface Interactions AJ 4.7.4. Internal Spaces as Nanoreactors AJ 5. Interconversions of Carbon Nanoallotropes AL 6. Combining Nanoarchitectures To Produce Advanced Allotropic Hybrids AO 6.1. Fullerene Aggregates AO 6.2. Carbon Clusters AQ 6.3. Assembled Nanostructures Containing Graphene Quantum Dots AR 6.4. Carbon Nanotubes and 2D Graphene Nanostructures AS 6.4.1. Transparent Thin Films AT 6.4.2. Conductive Membranes and Papers AT 6.5. Graphenic Hybrid Nanocomposites AU 6.5.1. Graphene−CNT Thin Films AU 6.5.2. Graphene−CNT Membranes AU 6.5.3. Graphene−CNT 3D Hybrids and Pillared Structures AU 6.6. 3D Graphenic Hybrid Superstructures AW 6.6.1. Aerogels, Nanofoams, and Spongelike Nanoarchitectures AW 6.6.2. Hollow 3D Microspheres AY 6.7. Nanoreactors Based on Carbon Nanotubes AY 6.8. Nanodiamonds and C60-Functionalized Graphene and Carbon Nanotubes BA 7. Predicted, Rare, and High-Pressure Carbon Nanoallotrope Structures BB 8. Summary, Outlook, and Selected Challenging Applications BJ Author Information BM Corresponding Author BM Notes BM Biographies BM Acknowledgments BN References BN |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Broad_Family_of_Carbon_Nanoallotropes碳同素异形体.pdf
2015-05-28 15:16:10, 6.02 M
» 猜你喜欢
无机化学论文润色/翻译怎么收费?
已经有263人回复
» 本主题相关商家推荐: (我也要在这里推广)
81楼2015-06-01 15:50:02
简单回复
lwg32楼
2015-05-28 16:01
回复
五星好评 顶一下,感谢分享!
sci6053楼
2015-05-28 18:45
回复
五星好评 顶一下,感谢分享!
jackydai4楼
2015-05-28 19:10
回复
五星好评 顶一下,感谢分享!
2015-05-28 20:25
回复
五星好评 顶一下,感谢分享!
心存理工6楼
2015-05-29 00:39
回复
五星好评 顶一下,感谢分享!
2015-05-29 08:24
回复
五星好评 顶一下,感谢分享!
2015-05-29 08:44
回复
五星好评 顶一下,感谢分享!
李飞明9楼
2015-05-29 09:00
回复
五星好评 顶一下,感谢分享!
liuxiuliang10楼
2015-05-29 09:21
回复
五星好评 顶一下,感谢分享!
100950311楼
2015-05-29 10:18
回复
五星好评 顶一下,感谢分享!
csm12312楼
2015-05-29 10:21
回复
五星好评 顶一下,感谢分享!
yzdlc13楼
2015-05-29 11:01
回复
五星好评 顶一下,感谢分享!
wmc135714楼
2015-05-29 11:15
回复
五星好评 顶一下,感谢分享!














回复此楼