| 查看: 4719 | 回复: 132 | |||||||
| 【奖励】 本帖被评价111次,作者pkusiyuan增加金币 87.8 个 | |||||||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||||||
[资源]
Optical Properties of Nanoparticle Systems: Mie and Beyond
|
|||||||
|
Contents Preface XIII 1 Introduction 1 2 Nanoparticle Systems and Experimental Optical Observables 9 2.1 Classifi cation of Nanoparticle Systems 10 2.2 Stability of Nanoparticle Systems 14 2.3 Extinction, Optical Density, and Scattering 21 2.3.1 The Role of the Particle Material Data 25 2.3.2 The Role of the Particle Size 26 2.3.3 The Role of the Particle Shape 29 2.3.4 The Role of the Particle Concentration 33 2.3.4.1 Dilute Systems 33 2.3.4.2 Closely Packed Systems 34 3 Interaction of Light with Matter – The Optical Material Function 37 3.1 Classical Description 37 3.1.1 The Harmonic Oscillator Model 38 3.1.2 Extensions of the Harmonic Oscillator Model 40 3.1.3 The Drude Dielectric Function 41 3.2 Quantum Mechanical Concepts 42 3.2.1 The Hubbard Dielectric Function 43 3.2.2 Interband Transitions 47 3.3 Tauc–Lorentz and OJL Models 50 3.4 Kramers–Kronig Relations and Penetration Depth 52 4 Fundamentals of Light Scattering by an Obstacle 55 4.1 Maxwell’s Equations and the Helmholtz Equation 56 4.2 Electromagnetic Fields 59 4.3 Boundary Conditions 61 4.4 Poynting’s Law and Cross-sections 62 4.5 Far-Field and Near-Field 65 VIII Contents 4.6 The Incident Electromagnetic Wave 66 4.7 Rayleigh’s Approximation for Small Particles – The Dipole Approximation 69 4.8 Rayleigh–Debye–Gans Approximation for Vanishing Optical Contrast 71 5 Mie’s Theory for Single Spherical Particles 75 5.1 Electromagnetic Fields and Boundary Conditions 76 5.2 Cross-sections, Scattering Intensities, and Related Quantities 83 5.3 Resonances 87 5.3.1 Geometric Resonances 88 5.3.2 Electronic Resonances and Surface Plasmon Polaritons 91 5.3.2.1 Electronic Resonances 92 5.3.2.2 Surface Plasmon Polariton Resonances 94 5.3.2.3 Multiple Resonances 101 5.3.3 Longitudinal Plasmon Resonances 104 5.4 Optical Contrast 108 5.5 Near-Field 112 5.5.1 Some Further Details 122 6 Application of Mie’s Theory 123 6.1 Drude Metal Particles (Al, Na, K) 124 6.2 Noble Metal Particles (Cu, Ag, Au) 127 6.2.1 Calculations 127 6.2.2 Experimental Examples 129 6.2.2.1 Colloidal Au and Ag Suspensions 129 6.2.2.2 Gold and Silver Nanoparticles in Glass 131 6.2.2.3 Copper Nanoparticles in Glass and Silica 132 6.2.2.4 AgxAu1−x Alloy Nanoparticles in Photosensitive Glass 134 6.2.2.5 Silver Aerosols 135 6.2.2.6 Further Experiments 137 6.3 Catalyst Metal Particles (Pt, Pd, Rh) 139 6.4 Magnetic Metal Particles (Fe, Ni, Co) 141 6.5 Rare Earth Metal Particles (Sc, Y, Er) 142 6.6 Transition Metal Particles (V, Nb, Ta) 145 6.7 Summary of Metal Particles 147 6.8 Semimetal Particles (TiN, ZrN) 148 6.9 Semiconductor Particles (Si, SiC, CdTe, ZnSe) 151 6.9.1 Calculations 151 6.9.2 Experimental Examples 154 6.9.2.1 Si Nanoparticles in Polyacrylene 154 6.9.2.2 Quantum Confi nement in CdSe Nanoparticles 154 6.10 Carbonaceous Particles 156 6.11 Absorbing Oxide Particles (Fe2O3, Cr2O3, Cu2O, CuO) 162 6.11.1 Calculations 162 Contents IX 6.11.2 Experimental Examples 163 6.11.2.1 Aerosols of Fe2O3 163 6.11.2.2 Aerosols of Cu2O and CuO 165 6.11.2.3 Colloidal Fe2O3 nanoparticles 167 6.12 Transparent Oxide Particles (SiO2, Al2O3, CeO2, TiO2) 168 6.13 Particles with Phonon Polaritons (MgO, NaCl, CaF2) 170 6.14 Miscellaneous Nanoparticles (ITO, LaB6, EuS) 172 7 Extensions of Mie’s Theory 177 7.1 Coated Spheres 177 7.1.1 Calculations 177 7.1.1.1 Metallic Shells on a Transparent Core 180 7.1.1.2 Oxide Shells on Metal and Semiconducting Core Particles 184 7.1.2 Experimental Examples 187 7.1.2.1 Ag–Au and Au–Ag Core–Shell Particles 187 7.1.2.2 Multishell Nanoparticles of Ag and Au 189 7.1.2.3 Optical Bistability in Silver-Coated CdS Nanoparticles 190 7.1.2.4 Ag and Au Aerosols with Salt Shells 193 7.1.2.5 Further Experiments 196 7.2 Supported Nanoparticles 198 7.3 Charged Nanoparticles 206 7.4 Anisotropic Materials 210 7.4.1 Dichroism 210 7.4.2 Field-Induced Anisotropy 211 7.4.3 Gradient-Index Materials 211 7.4.4 Optically Active Materials 213 7.5 Absorbing Embedding Media 214 7.5.1 Calculations 214 7.5.2 Experimental Examples 219 7.5.2.1 Absorption of Scattered Light in Ag and Au Colloids 219 7.5.2.2 Ag and Fe Nanoparticles in Fullerene Film 220 7.6 Inhomogeneous Incident Waves 223 7.6.1 Gaussian Beam Illumination 223 7.6.2 Evanescent Waves from Total Internal Refl ection 226 8 Limitations of Mie’s Theory – Size and Quantum Size Effects in Very Small Nanoparticles 233 8.1 Boundary Conditions – the Spill-Out Effect 233 8.2 Free Path Effect in Nanoparticles 234 8.3 Chemical Interface Damping – Dynamic Charge Transfer 240 9 Beyond Mie’s Theory I – Nonspherical Particles 245 9.1 Spheroids and Ellipsoids 247 9.1.1 Spheroids (Ellipsoids of Revolution) 247 9.1.1.1 Electromagnetic Fields 248 X Contents 9.1.1.2 Scattering Coeffi cients 251 9.1.1.3 Cross-sections 252 9.1.1.4 Resonances 252 9.1.1.5 Numerical Examples 254 9.1.1.6 Extensions 254 9.1.2 Ellipsoids (Rayleigh Approximation) 255 9.1.3 Numerical Examples for Ellipsoids 259 9.1.3.1 Metal Particles 259 9.1.3.2 Semimetal and Semiconductor Particles 265 9.1.3.3 Carbonaceous Particles 266 9.1.3.4 Particles with Phonon Polaritons 267 9.1.3.5 Miscellaneous Particles 267 9.1.4 Experimental Results 268 9.1.4.1 Prolate Spheroidal Silver Particles in Fourcault Glass 268 9.1.4.2 Plasma Polymer Films with Nonspherical Silver Particles 269 9.1.4.3 Further Experiments 272 9.2 Cylinders 273 9.2.1 Electromagnetic Fields and Scattering Coeffi cients 273 9.2.2 Effi ciencies and Scattering Intensities 277 9.2.3 Resonances 279 9.2.4 Extensions 281 9.2.5 Numerical Examples 282 9.2.5.1 Metal Particles 283 9.2.5.2 Semimetal and Semiconductor Particles 288 9.2.5.3 Carbonaceous Particles 291 9.2.5.4 Oxide Particles 292 9.2.5.5 Particles with Phonon Polaritons 293 9.2.5.6 Miscellaneous Particles 294 9.3 Cubic Particles 296 9.3.1 Theoretical Considerations 296 9.3.2 Numerical Examples 298 9.3.2.1 Metal Particles 299 9.3.2.2 Semimetal and Semiconductor Particles 299 9.3.2.3 Particles with Phonon Polaritons 300 9.3.2.4 Miscellaneous Particles 301 9.4 Numerical Methods 302 9.4.1 Discrete Dipole Approximation 302 9.4.2 T-Matrix Method or Extended Boundary Condition Method 305 9.4.3 Other Numerical Methods 307 9.4.3.1 Point Matching Method 307 9.4.3.2 Discretized Mie Formalism 307 9.4.3.3 Generalized Multipole Technique 307 9.4.3.4 Finite Difference Time Domain Technique 307 9.5 Application of Numerical Methods to Nonspherical Nanoparticles 308 Contents XI 9.5.1 Nonmetallic Nanoparticles 308 9.5.2 Metallic Nanoparticles 310 10 Beyond Mie’s Theory II – The Generalized Mie Theory 317 10.1 Derivation of the Generalized Mie Theory 318 10.2 Resonances 321 10.3 Common Results 325 10.3.1 Infl uence of Shape 325 10.3.2 Infl uence of Length 327 10.3.3 Infl uence of Interparticle Distance 327 10.3.4 Enhancement of Scattering and Extinction 329 10.3.5 The Problem of Convergence 331 10.4 Extensions of the Generalized Mie Theory 335 10.4.1 Incident Beam 335 10.4.2 Nonspherical Particles 336 11 The Generalized Mie Theory Applied to Different Systems 341 11.1 Metal Particles 342 11.1.1 Calculations 342 11.1.2 Experimental Results 346 11.1.2.1 Extinction of Light in Colloidal Gold and Silver Systems 346 11.1.2.2 Total Scattering of Light by Aggregates 353 11.1.2.3 Angle-Resolved Light Scattering by Nanoparticle Aggregates 355 11.1.2.4 PTOBD on Aggregated Gold and Silver Nanocomposites 358 11.1.2.5 Light-Induced van der Waals Attraction 360 11.1.2.6 Coalescence of Nanoparticles 361 11.1.2.7 Further Experiments with Gold and Silver Nanoparticles 363 11.2 Semimetal and Semiconductor Particles 364 11.3 Nonabsorbing Dielectrics 367 11.4 Carbonaceous Particles 369 11.5 Particles with Phonon Polaritons 372 11.6 Miscellaneous Particles 375 11.7 Aggregates of Nanoparticles of Different Materials 376 11.8 Optical Particle Sizing 379 11.9 Stochastically Distributed Spheres 382 11.10 Aggregates of Spheres and Numerical Methods 387 11.10.1 Applications of the Discrete Dipole Approximation 387 11.10.2 Applications of the T-Matrix approach 389 11.10.3 Other Methods 389 12 Densely Packed Systems 393 12.1 The Two-Flux Theory of Kubelka and Munk 394 12.2 Applications of the Kubelka–Munk Theory 397 12.2.1 Dense Systems of Color Pigments: Cr2O3, Fe2O3, and Cu2O 398 12.2.2 Dense Systems of White Pigments: SiO2 and TiO2 399 XII Contents 12.2.3 Dense Systems of ZrN and TiN Nanoparticles 400 12.2.4 Dense Systems of Silicon Nanoparticles 401 12.2.5 Dense Systems of IR Absorbers: ITO and LaB6 403 12.2.6 Dense Systems of Noble Metals: Ag and Au 404 12.2.7 The Lycurgus Cup 406 12.3 Improvements of the Kubelka–Munk Theory 407 13 Near-Field and SERS 411 13.1 Waveguiding Along Particle Chains 412 13.2 Scanning Near-Field Optical Microscopy 416 13.3 SERS with Aggregates 420 14 Effective Medium Theories 427 14.1 Theoretical Results for Dielectric Nanoparticle Composites 431 14.2 Theoretical Results for Metal Nanoparticle Composites 433 14.3 Experimental Examples 437 References 441 Color Plates 479 Index 485 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Wiley-Optical.Properties.of.Nanoparticle.Systems.2011.RETAiL.EBook-DiGiBook.pdf
2015-04-18 00:57:31, 7.28 M
» 收录本帖的淘帖专辑推荐
电化学电源、电源管理 | 纳米材料+光电子学 | Book & Review | nanoparticles&quantumdots |
合成制备 |
» 猜你喜欢
无机化学论文润色/翻译怎么收费?
已经有260人回复
» 本主题相关价值贴推荐,对您同样有帮助:
09年晶体牛人名家实验室链接介绍(回帖有金币)
已经有161人回复
10楼2015-04-18 10:28:40
2楼2015-04-18 01:53:05
简单回复
2015-04-18 06:03
回复
五星好评 顶一下,感谢分享!
2015-04-18 07:31
回复
五星好评 顶一下,感谢分享!
wjy20115楼
2015-04-18 07:37
回复
五星好评 顶一下,感谢分享!
cqu35556楼
2015-04-18 07:41
回复
五星好评 顶一下,感谢分享!
seinberg7楼
2015-04-18 09:07
回复
五星好评 顶一下,感谢分享!
牛虻吹泡泡8楼
2015-04-18 10:01
回复
五星好评 顶一下,感谢分享!
2015-04-18 10:11
回复
五星好评 顶一下,感谢分享!
nestil11楼
2015-04-18 11:02
回复
五星好评 顶一下,感谢分享!
pipi12楼
2015-04-18 11:53
回复
五星好评 顶一下,感谢分享!
efoxxx13楼
2015-04-18 12:13
回复
五星好评 顶一下,感谢分享!
zimoqingfeng14楼
2015-04-18 12:16
回复
五星好评 顶一下,感谢分享!













回复此楼