24小时热门版块排行榜    

CyRhmU.jpeg
查看: 4719  |  回复: 132
【奖励】 本帖被评价111次,作者pkusiyuan增加金币 87.8
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

pkusiyuan

银虫 (正式写手)


[资源] Optical Properties of Nanoparticle Systems: Mie and Beyond

Contents
Preface XIII
1 Introduction 1
2 Nanoparticle Systems and Experimental Optical Observables 9
2.1 Classifi cation of Nanoparticle Systems 10
2.2 Stability of Nanoparticle Systems 14
2.3 Extinction, Optical Density, and Scattering 21
2.3.1 The Role of the Particle Material Data 25
2.3.2 The Role of the Particle Size 26
2.3.3 The Role of the Particle Shape 29
2.3.4 The Role of the Particle Concentration 33
2.3.4.1 Dilute Systems 33
2.3.4.2 Closely Packed Systems 34
3 Interaction of Light with Matter – The Optical Material Function 37
3.1 Classical Description 37
3.1.1 The Harmonic Oscillator Model 38
3.1.2 Extensions of the Harmonic Oscillator Model 40
3.1.3 The Drude Dielectric Function 41
3.2 Quantum Mechanical Concepts 42
3.2.1 The Hubbard Dielectric Function 43
3.2.2 Interband Transitions 47
3.3 Tauc–Lorentz and OJL Models 50
3.4 Kramers–Kronig Relations and Penetration Depth 52
4 Fundamentals of Light Scattering by an Obstacle 55
4.1 Maxwell’s Equations and the Helmholtz Equation 56
4.2 Electromagnetic Fields 59
4.3 Boundary Conditions 61
4.4 Poynting’s Law and Cross-sections 62
4.5 Far-Field and Near-Field 65
VIII Contents
4.6 The Incident Electromagnetic Wave 66
4.7 Rayleigh’s Approximation for Small Particles – The Dipole
Approximation 69
4.8 Rayleigh–Debye–Gans Approximation for Vanishing Optical
Contrast 71
5 Mie’s Theory for Single Spherical Particles 75
5.1 Electromagnetic Fields and Boundary Conditions 76
5.2 Cross-sections, Scattering Intensities, and Related Quantities 83
5.3 Resonances 87
5.3.1 Geometric Resonances 88
5.3.2 Electronic Resonances and Surface Plasmon Polaritons 91
5.3.2.1 Electronic Resonances 92
5.3.2.2 Surface Plasmon Polariton Resonances 94
5.3.2.3 Multiple Resonances 101
5.3.3 Longitudinal Plasmon Resonances 104
5.4 Optical Contrast 108
5.5 Near-Field 112
5.5.1 Some Further Details 122
6 Application of Mie’s Theory 123
6.1 Drude Metal Particles (Al, Na, K) 124
6.2 Noble Metal Particles (Cu, Ag, Au) 127
6.2.1 Calculations 127
6.2.2 Experimental Examples 129
6.2.2.1 Colloidal Au and Ag Suspensions 129
6.2.2.2 Gold and Silver Nanoparticles in Glass 131
6.2.2.3 Copper Nanoparticles in Glass and Silica 132
6.2.2.4 AgxAu1−x Alloy Nanoparticles in Photosensitive Glass 134
6.2.2.5 Silver Aerosols 135
6.2.2.6 Further Experiments 137
6.3 Catalyst Metal Particles (Pt, Pd, Rh) 139
6.4 Magnetic Metal Particles (Fe, Ni, Co) 141
6.5 Rare Earth Metal Particles (Sc, Y, Er) 142
6.6 Transition Metal Particles (V, Nb, Ta) 145
6.7 Summary of Metal Particles 147
6.8 Semimetal Particles (TiN, ZrN) 148
6.9 Semiconductor Particles (Si, SiC, CdTe, ZnSe) 151
6.9.1 Calculations 151
6.9.2 Experimental Examples 154
6.9.2.1 Si Nanoparticles in Polyacrylene 154
6.9.2.2 Quantum Confi nement in CdSe Nanoparticles 154
6.10 Carbonaceous Particles 156
6.11 Absorbing Oxide Particles (Fe2O3, Cr2O3, Cu2O, CuO) 162
6.11.1 Calculations 162
Contents IX
6.11.2 Experimental Examples 163
6.11.2.1 Aerosols of Fe2O3 163
6.11.2.2 Aerosols of Cu2O and CuO 165
6.11.2.3 Colloidal Fe2O3 nanoparticles 167
6.12 Transparent Oxide Particles (SiO2, Al2O3, CeO2, TiO2) 168
6.13 Particles with Phonon Polaritons (MgO, NaCl, CaF2) 170
6.14 Miscellaneous Nanoparticles (ITO, LaB6, EuS) 172
7 Extensions of Mie’s Theory 177
7.1 Coated Spheres 177
7.1.1 Calculations 177
7.1.1.1 Metallic Shells on a Transparent Core 180
7.1.1.2 Oxide Shells on Metal and Semiconducting Core Particles 184
7.1.2 Experimental Examples 187
7.1.2.1 Ag–Au and Au–Ag Core–Shell Particles 187
7.1.2.2 Multishell Nanoparticles of Ag and Au 189
7.1.2.3 Optical Bistability in Silver-Coated CdS Nanoparticles 190
7.1.2.4 Ag and Au Aerosols with Salt Shells 193
7.1.2.5 Further Experiments 196
7.2 Supported Nanoparticles 198
7.3 Charged Nanoparticles 206
7.4 Anisotropic Materials 210
7.4.1 Dichroism 210
7.4.2 Field-Induced Anisotropy 211
7.4.3 Gradient-Index Materials 211
7.4.4 Optically Active Materials 213
7.5 Absorbing Embedding Media 214
7.5.1 Calculations 214
7.5.2 Experimental Examples 219
7.5.2.1 Absorption of Scattered Light in Ag and Au Colloids 219
7.5.2.2 Ag and Fe Nanoparticles in Fullerene Film 220
7.6 Inhomogeneous Incident Waves 223
7.6.1 Gaussian Beam Illumination 223
7.6.2 Evanescent Waves from Total Internal Refl ection 226
8 Limitations of Mie’s Theory – Size and Quantum Size Effects in Very
Small Nanoparticles 233
8.1 Boundary Conditions – the Spill-Out Effect 233
8.2 Free Path Effect in Nanoparticles 234
8.3 Chemical Interface Damping – Dynamic Charge Transfer 240
9 Beyond Mie’s Theory I – Nonspherical Particles 245
9.1 Spheroids and Ellipsoids 247
9.1.1 Spheroids (Ellipsoids of Revolution) 247
9.1.1.1 Electromagnetic Fields 248
X Contents
9.1.1.2 Scattering Coeffi cients 251
9.1.1.3 Cross-sections 252
9.1.1.4 Resonances 252
9.1.1.5 Numerical Examples 254
9.1.1.6 Extensions 254
9.1.2 Ellipsoids (Rayleigh Approximation) 255
9.1.3 Numerical Examples for Ellipsoids 259
9.1.3.1 Metal Particles 259
9.1.3.2 Semimetal and Semiconductor Particles 265
9.1.3.3 Carbonaceous Particles 266
9.1.3.4 Particles with Phonon Polaritons 267
9.1.3.5 Miscellaneous Particles 267
9.1.4 Experimental Results 268
9.1.4.1 Prolate Spheroidal Silver Particles in Fourcault Glass 268
9.1.4.2 Plasma Polymer Films with Nonspherical Silver Particles 269
9.1.4.3 Further Experiments 272
9.2 Cylinders 273
9.2.1 Electromagnetic Fields and Scattering Coeffi cients 273
9.2.2 Effi ciencies and Scattering Intensities 277
9.2.3 Resonances 279
9.2.4 Extensions 281
9.2.5 Numerical Examples 282
9.2.5.1 Metal Particles 283
9.2.5.2 Semimetal and Semiconductor Particles 288
9.2.5.3 Carbonaceous Particles 291
9.2.5.4 Oxide Particles 292
9.2.5.5 Particles with Phonon Polaritons 293
9.2.5.6 Miscellaneous Particles 294
9.3 Cubic Particles 296
9.3.1 Theoretical Considerations 296
9.3.2 Numerical Examples 298
9.3.2.1 Metal Particles 299
9.3.2.2 Semimetal and Semiconductor Particles 299
9.3.2.3 Particles with Phonon Polaritons 300
9.3.2.4 Miscellaneous Particles 301
9.4 Numerical Methods 302
9.4.1 Discrete Dipole Approximation 302
9.4.2 T-Matrix Method or Extended Boundary Condition Method 305
9.4.3 Other Numerical Methods 307
9.4.3.1 Point Matching Method 307
9.4.3.2 Discretized Mie Formalism 307
9.4.3.3 Generalized Multipole Technique 307
9.4.3.4 Finite Difference Time Domain Technique 307
9.5 Application of Numerical Methods to Nonspherical
Nanoparticles 308
Contents XI
9.5.1 Nonmetallic Nanoparticles 308
9.5.2 Metallic Nanoparticles 310
10 Beyond Mie’s Theory II – The Generalized Mie Theory 317
10.1 Derivation of the Generalized Mie Theory 318
10.2 Resonances 321
10.3 Common Results 325
10.3.1 Infl uence of Shape 325
10.3.2 Infl uence of Length 327
10.3.3 Infl uence of Interparticle Distance 327
10.3.4 Enhancement of Scattering and Extinction 329
10.3.5 The Problem of Convergence 331
10.4 Extensions of the Generalized Mie Theory 335
10.4.1 Incident Beam 335
10.4.2 Nonspherical Particles 336
11 The Generalized Mie Theory Applied to Different Systems 341
11.1 Metal Particles 342
11.1.1 Calculations 342
11.1.2 Experimental Results 346
11.1.2.1 Extinction of Light in Colloidal Gold and Silver Systems 346
11.1.2.2 Total Scattering of Light by Aggregates 353
11.1.2.3 Angle-Resolved Light Scattering by Nanoparticle Aggregates 355
11.1.2.4 PTOBD on Aggregated Gold and Silver Nanocomposites 358
11.1.2.5 Light-Induced van der Waals Attraction 360
11.1.2.6 Coalescence of Nanoparticles 361
11.1.2.7 Further Experiments with Gold and Silver Nanoparticles 363
11.2 Semimetal and Semiconductor Particles 364
11.3 Nonabsorbing Dielectrics 367
11.4 Carbonaceous Particles 369
11.5 Particles with Phonon Polaritons 372
11.6 Miscellaneous Particles 375
11.7 Aggregates of Nanoparticles of Different Materials 376
11.8 Optical Particle Sizing 379
11.9 Stochastically Distributed Spheres 382
11.10 Aggregates of Spheres and Numerical Methods 387
11.10.1 Applications of the Discrete Dipole Approximation 387
11.10.2 Applications of the T-Matrix approach 389
11.10.3 Other Methods 389
12 Densely Packed Systems 393
12.1 The Two-Flux Theory of Kubelka and Munk 394
12.2 Applications of the Kubelka–Munk Theory 397
12.2.1 Dense Systems of Color Pigments: Cr2O3, Fe2O3, and Cu2O 398
12.2.2 Dense Systems of White Pigments: SiO2 and TiO2 399
XII Contents
12.2.3 Dense Systems of ZrN and TiN Nanoparticles 400
12.2.4 Dense Systems of Silicon Nanoparticles 401
12.2.5 Dense Systems of IR Absorbers: ITO and LaB6 403
12.2.6 Dense Systems of Noble Metals: Ag and Au 404
12.2.7 The Lycurgus Cup 406
12.3 Improvements of the Kubelka–Munk Theory 407
13 Near-Field and SERS 411
13.1 Waveguiding Along Particle Chains 412
13.2 Scanning Near-Field Optical Microscopy 416
13.3 SERS with Aggregates 420
14 Effective Medium Theories 427
14.1 Theoretical Results for Dielectric Nanoparticle Composites 431
14.2 Theoretical Results for Metal Nanoparticle Composites 433
14.3 Experimental Examples 437
References 441
Color Plates 479
Index 485
回复此楼

» 本帖附件资源列表

» 收录本帖的淘帖专辑推荐

电化学电源、电源管理 纳米材料+光电子学 Book & Review nanoparticles&quantumdots
合成制备

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

voidvoid

木虫 (正式写手)


★★★★★ 五星级,优秀推荐

我好奇是从哪里可以找到这些书

[ 发自手机版 http://muchong.com/3g ]
10楼2015-04-18 10:28:40
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 133 个回答

大麦07

铁杆木虫 (著名写手)


★★★★★ 五星级,优秀推荐

翻过一下,感觉这书挺难的。
2楼2015-04-18 01:53:05
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
2015-04-18 06:03   回复  
五星好评  顶一下,感谢分享!
tainanlic4楼
2015-04-18 07:31   回复  
五星好评  顶一下,感谢分享!
wjy20115楼
2015-04-18 07:37   回复  
五星好评  顶一下,感谢分享!
cqu35556楼
2015-04-18 07:41   回复  
五星好评  顶一下,感谢分享!
seinberg7楼
2015-04-18 09:07   回复  
五星好评  顶一下,感谢分享!
2015-04-18 10:01   回复  
五星好评  顶一下,感谢分享!
2015-04-18 10:11   回复  
五星好评  顶一下,感谢分享!
nestil11楼
2015-04-18 11:02   回复  
五星好评  顶一下,感谢分享!
pipi12楼
2015-04-18 11:53   回复  
五星好评  顶一下,感谢分享!
efoxxx13楼
2015-04-18 12:13   回复  
五星好评  顶一下,感谢分享!
2015-04-18 12:16   回复  
五星好评  顶一下,感谢分享!
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见