24小时热门版块排行榜    

CyRhmU.jpeg
南方科技大学公共卫生及应急管理学院2025级博士研究生招生报考通知
查看: 1449  |  回复: 28
【奖励】 本帖被评价22次,作者pkusiyuan增加金币 17.4

pkusiyuan

银虫 (正式写手)


[资源] Coherent.States.and.Applications.in.Mathematical.Physics

1 Introduction to Coherent States . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Weyl–Heisenberg Group and the Canonical Coherent States . . 2
1.1.1 The Weyl–Heisenberg Translation Operator . . . . . . . . 2
1.1.2 The Coherent States of Arbitrary Profile . . . . . . . . . . 6
1.2 The Coherent States of the Harmonic Oscillator . . . . . . . . . . 7
1.2.1 Definition and Properties . . . . . . . . . . . . . . . . . . 7
1.2.2 The Time Evolution of the Coherent State
for the Harmonic Oscillator Hamiltonian . . . . . . . . . . 11
1.2.3 AnOver-completeSystem. . . . . . . . . . . . . . . . . . 12
1.3 From Schrödinger to Bargmann–Fock Representation . . . . . . . 16
2 Weyl Quantization and Coherent States . . . . . . . . . . . . . . . . 23
2.1 Classical and Quantum Observables . . . . . . . . . . . . . . . . . 23
2.1.1 Group Invariance of Weyl Quantization . . . . . . . . . . . 27
2.2 Wigner Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Coherent States and Operator Norms Estimates . . . . . . . . . . . 35
2.4 Product Rule and Applications . . . . . . . . . . . . . . . . . . . 40
2.4.1 The Moyal Product . . . . . . . . . . . . . . . . . . . . . 40
2.4.2 Functional Calculus . . . . . . . . . . . . . . . . . . . . . 43
2.4.3 Propagation of Observables . . . . . . . . . . . . . . . . . 45
2.4.4 Return to Symplectic Invariance of Weyl Quantization . . . 47
2.5 Husimi Functions, Frequency Sets and Propagation . . . . . . . . 49
2.5.1 Frequency Sets . . . . . . . . . . . . . . . . . . . . . . . . 49
2.5.2 About Frequency Set of Eigenstates . . . . . . . . . . . . . 52
2.6 WickQuantization . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6.1 General Properties . . . . . . . . . . . . . . . . . . . . . . 52
2.6.2 ApplicationtoSemi-classicalMeasures . . . . . . . . . . . 55
3 The Quadratic Hamiltonians . . . . . . . . . . . . . . . . . . . . . . 59
3.1 The Propagator of Quadratic Quantum Hamiltonians . . . . . . . . 59
3.2 The Propagation of Coherent States . . . . . . . . . . . . . . . . . 61
3.3 TheMetaplecticTransformations . . . . . . . . . . . . . . . . . . 69
ix
x Contents
3.4 Representation of the Quantum Propagator in Terms
of the Generator of Squeezed States . . . . . . . . . . . . . . . . . 71
3.5 Representation of the Weyl Symbol of the Metaplectic Operators . 78
3.6 Traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.6.1 TheClassicalMotion . . . . . . . . . . . . . . . . . . . . 81
3.7 The Quantum Evolution . . . . . . . . . . . . . . . . . . . . . . . 82
4 The Semiclassical Evolution of Gaussian Coherent States . . . . . . 87
4.1 General Results and Assumptions . . . . . . . . . . . . . . . . . . 87
4.1.1 Assumptions andNotations . . . . . . . . . . . . . . . . . 88
4.1.2 The Semiclassical Evolution of Generalized Coherent
States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.3 RelatedWorks andOtherResults . . . . . . . . . . . . . . 100
4.2 Application to the Spreading of Quantum Wave Packets . . . . . . 100
4.3 Evolution of Coherent States and Bargmann Transform . . . . . . 103
4.3.1 FormalComputations . . . . . . . . . . . . . . . . . . . . 103
4.3.2 Weighted Estimates and Fourier–Bargmann Transform . . . 105
4.3.3 Large Time Estimates and Fourier–Bargmann Analysis . . 107
4.3.4 Exponentially Small Estimates . . . . . . . . . . . . . . . 110
4.4 Application to the Scattering Theory . . . . . . . . . . . . . . . . 114
5 Trace Formulas and Coherent States . . . . . . . . . . . . . . . . . . 123
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 The Semi-classical Gutzwiller Trace Formula . . . . . . . . . . . . 127
5.3 Preparations for the Proof . . . . . . . . . . . . . . . . . . . . . . 131
5.4 The Stationary Phase Computation . . . . . . . . . . . . . . . . . 135
5.5 A Pointwise Trace Formula and Quasi-modes . . . . . . . . . . . 143
5.5.1 APointwiseTraceFormula . . . . . . . . . . . . . . . . . 144
5.5.2 Quasi-modes and Bohr–Sommerfeld Quantization Rules . . 145
6 Quantization and Coherent States on the 2-Torus . . . . . . . . . . . 151
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2 TheAutomorphismsof the2-Torus . . . . . . . . . . . . . . . . . 151
6.3 TheKinematicsFrameworkandQuantization . . . . . . . . . . . 155
6.4 The Coherent States of the Torus . . . . . . . . . . . . . . . . . . 162
6.5 TheWeyl andAnti-WickQuantizationsonthe2-Torus . . . . . . . 166
6.5.1 TheWeylQuantizationon the 2-Torus . . . . . . . . . . . 166
6.5.2 TheAnti-WickQuantizationonthe2-Torus . . . . . . . . 168
6.6 Quantum Dynamics and Exact Egorov’s Theorem . . . . . . . . . 170
6.6.1 Quantization of SL(2,Z) . . . . . . . . . . . . . . . . . . 170
6.6.2 The Egorov Theorem Is Exact . . . . . . . . . . . . . . . . 173
6.6.3 Propagation of Coherent States . . . . . . . . . . . . . . . 174
6.7 Equipartition of the Eigenfunctions of Quantized Ergodic Maps
onthe2-Torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.8 Spectral Analysis of Hamiltonian Perturbations . . . . . . . . . . . 177
Contents xi
7 Spin-Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.2 The Groups SO(3) and SU(2) . . . . . . . . . . . . . . . . . . . . 183
7.3 The Irreducible Representations of SU(2) . . . . . . . . . . . . . . 187
7.3.1 The Irreducible Representations of su(2) . . . . . . . . . . 187
7.3.2 The Irreducible Representations of SU(2) . . . . . . . . . . 191
7.3.3 Irreducible Representations of SO(3) and Spherical
Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.4 The Coherent States of SU(2) . . . . . . . . . . . . . . . . . . . . 199
7.4.1 Definition and First Properties . . . . . . . . . . . . . . . . 199
7.4.2 SomeExplicitFormulas . . . . . . . . . . . . . . . . . . . 203
7.5 Coherent States on the Riemann Sphere . . . . . . . . . . . . . . . 213
7.6 Application to High Spin Inequalities . . . . . . . . . . . . . . . . 216
7.6.1 Berezin–Lieb Inequalities . . . . . . . . . . . . . . . . . . 216
7.6.2 HighSpinEstimates . . . . . . . . . . . . . . . . . . . . . 217
7.7 More on High Spin Limit: From Spin-Coherent States
to Harmonic-Oscillator Coherent States . . . . . . . . . . . . . . . 220
8 Pseudo-Spin-Coherent States . . . . . . . . . . . . . . . . . . . . . . 225
8.1 Introduction to the Geometry of the Pseudo-Sphere, SO(2, 1)
and SU(1, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
8.1.1 Minkowski Model . . . . . . . . . . . . . . . . . . . . . . 225
8.1.2 Lie Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 227
8.1.3 The Disc and the Half-Plane Poincaré Representations
of the Pseudo-Sphere . . . . . . . . . . . . . . . . . . . . 229
8.2 Unitary Representations of SU(1, 1) . . . . . . . . . . . . . . . . 231
8.2.1 Classification of the Possible Representations
of SU(1, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.2.2 Discrete Series Representations of SU(1, 1) . . . . . . . . 234
8.2.3 Irreducibility of Discrete Series . . . . . . . . . . . . . . . 238
8.2.4 PrincipalSeries . . . . . . . . . . . . . . . . . . . . . . . 239
8.2.5 ComplementarySeries . . . . . . . . . . . . . . . . . . . . 241
8.2.6 BosonsSystemsRealizations . . . . . . . . . . . . . . . . 243
8.3 Pseudo-Coherent States for Discrete Series . . . . . . . . . . . . . 245
8.3.1 Definition of Coherent States for Discrete Series . . . . . . 245
8.3.2 SomeExplicitFormula . . . . . . . . . . . . . . . . . . . 246
8.3.3 Bargmann Transform and Large k Limit . . . . . . . . . . 250
8.4 Coherent States for the Principal Series . . . . . . . . . . . . . . . 252
8.5 Generator of Squeezed States. Application . . . . . . . . . . . . . 252
8.5.1 The Generator of Squeezed States . . . . . . . . . . . . . . 253
8.5.2 Application to Quantum Dynamics . . . . . . . . . . . . . 254
8.6 Wavelets and Pseudo-Spin-Coherent States . . . . . . . . . . . . . 258
9 The Coherent States of the Hydrogen Atom . . . . . . . . . . . . . . 263
9.1 The S3 Sphere and the Group SO(4) . . . . . . . . . . . . . . . . 263
9.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 263
xii Contents
9.1.2 Irreducible Representations of SO(4) . . . . . . . . . . . . 264
9.1.3 Hyperspherical Harmonics and Spectral Decomposition
of ΔS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
9.1.4 The Coherent States for S3 . . . . . . . . . . . . . . . . . 268
9.2 The Hydrogen Atom . . . . . . . . . . . . . . . . . . . . . . . . . 271
9.2.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . 271
9.2.2 The Fock Transformation: A Map from L2(S3)
to the Pure-Point Subspace of Hˆ . . . . . . . . . . . . . . 273
9.3 The Coherent States of the Hydrogen Atom . . . . . . . . . . . . . 277
10 Bosonic Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . 285
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
10.2 Fock Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
10.2.1 Bosons andFermions . . . . . . . . . . . . . . . . . . . . 286
10.2.2 Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
10.3 The Bosons Coherent States . . . . . . . . . . . . . . . . . . . . . 292
10.4 TheClassicalLimit forLargeSystemsofBosons . . . . . . . . . . 296
10.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 296
10.4.2 Hepp’s Method . . . . . . . . . . . . . . . . . . . . . . . . 297
10.4.3 Remainder Estimates in the Hepp Method . . . . . . . . . 303
10.4.4 Time Evolution of Coherent States . . . . . . . . . . . . . 306
11 Fermionic Coherent States . . . . . . . . . . . . . . . . . . . . . . . . 311
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
11.2 From Fermionic Fock Spaces to Grassmann Algebras . . . . . . . 312
11.3 Integration on Grassmann Algebra . . . . . . . . . . . . . . . . . 315
11.3.1 More Properties on Grassmann Algebras . . . . . . . . . . 315
11.3.2 CalculuswithGrassmannNumbers . . . . . . . . . . . . . 317
11.3.3 Gaussian Integrals . . . . . . . . . . . . . . . . . . . . . . 318
11.4 Super-Hilbert Spaces and Operators . . . . . . . . . . . . . . . . . 320
11.4.1 A Space for Fermionic States . . . . . . . . . . . . . . . . 320
11.4.2 IntegralKernels . . . . . . . . . . . . . . . . . . . . . . . 322
11.4.3 AFourierTransform . . . . . . . . . . . . . . . . . . . . . 323
11.5 Coherent States for Fermions . . . . . . . . . . . . . . . . . . . . 324
11.5.1 WeylTranslations . . . . . . . . . . . . . . . . . . . . . . 324
11.5.2 Fermionic Coherent States . . . . . . . . . . . . . . . . . . 325
11.6 RepresentationsofOperators . . . . . . . . . . . . . . . . . . . . 327
11.6.1 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
11.6.2 Representation by Translations and Weyl Quantization . . . 331
11.6.3 Wigner–Weyl Functions . . . . . . . . . . . . . . . . . . . 334
11.6.4 The Moyal Product for Fermions . . . . . . . . . . . . . . 339
11.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
11.7.1 The Fermi Oscillator . . . . . . . . . . . . . . . . . . . . . 341
11.7.2 TheFermi–DiracStatistics . . . . . . . . . . . . . . . . . 342
11.7.3 Quadratic Hamiltonians and Coherent States . . . . . . . . 343
11.7.4 More on Quadratic Propagators . . . . . . . . . . . . . . . 348
Contents xiii
12 Supercoherent States—An Introduction . . . . . . . . . . . . . . . . 353
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
12.2 Quantum Supersymmetry . . . . . . . . . . . . . . . . . . . . . . 354
12.3 Classical Superspaces . . . . . . . . . . . . . . . . . . . . . . . . 356
12.3.1 Morphisms and Spaces . . . . . . . . . . . . . . . . . . . 356
12.3.2 Superalgebra Notions . . . . . . . . . . . . . . . . . . . . 357
12.3.3 ExamplesofMorphisms . . . . . . . . . . . . . . . . . . . 358
12.4 Super-Lie Algebras and Groups . . . . . . . . . . . . . . . . . . . 359
12.4.1 Super-Lie Algebras . . . . . . . . . . . . . . . . . . . . . 359
12.4.2 Supermanifolds, a Very Brief Presentation . . . . . . . . . 361
12.4.3 Super-Lie Groups . . . . . . . . . . . . . . . . . . . . . . 362
12.5 Classical Supersymmetry . . . . . . . . . . . . . . . . . . . . . . 366
12.5.1 A Short Overview of Classical Mechanics . . . . . . . . . 366
12.5.2 Supersymmetric Mechanics . . . . . . . . . . . . . . . . . 369
12.5.3 Supersymmetric Quantization . . . . . . . . . . . . . . . . 374
12.6 Supercoherent States . . . . . . . . . . . . . . . . . . . . . . . . . 376
12.7 Phase Space Representations of Super Operators . . . . . . . . . . 378
12.8 Application to the Dicke Model . . . . . . . . . . . . . . . . . . . 379
Appendix A Tools for Integral Computations . . . . . . . . . . . . . . . 383
A.1 Fourier Transform of Gaussian Functions . . . . . . . . . . . . . . 383
A.2 Sketch of Proof for Theorem 29 . . . . . . . . . . . . . . . . . . . 383
A.3 A Determinant Computation . . . . . . . . . . . . . . . . . . . . . 384
A.4 The Saddle Point Method . . . . . . . . . . . . . . . . . . . . . . 387
A.4.1 TheOneRealVariableCase . . . . . . . . . . . . . . . . . 387
A.4.2 TheComplexVariablesCase . . . . . . . . . . . . . . . . 387
A.5 KählerGeometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Appendix B Lie Groups and Coherent States . . . . . . . . . . . . . . . 391
B.1 Lie Groups and Coherent States . . . . . . . . . . . . . . . . . . . 391
B.2 On Lie Groups and Lie Algebras . . . . . . . . . . . . . . . . . . 391
B.2.1 Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 391
B.2.2 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 392
B.3 Representations of Lie Groups . . . . . . . . . . . . . . . . . . . . 395
B.3.1 General Properties of Representations . . . . . . . . . . . . 395
B.3.2 The Compact Case . . . . . . . . . . . . . . . . . . . . . . 397
B.3.3 The Non-compact Case . . . . . . . . . . . . . . . . . . . 398
B.4 Coherent States According Gilmore–Perelomov . . . . . . . . . . 398
Appendix C Berezin Quantization and Coherent States . . . . . . . . . 401
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
回复此楼

» 本帖附件资源列表

» 本帖已获得的红花(最新10朵)

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

sltj

金虫 (正式写手)


★★★★★ 五星级,优秀推荐

顶一下,感谢分享!
谢谢楼主,赞!
12楼2015-04-01 11:41:29
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

nrs515

新虫 (小有名气)


★★★★★ 五星级,优秀推荐

好评!非常感谢分享!
24楼2017-08-22 17:48:33
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

nrs515

新虫 (小有名气)


送红花一朵
非常棒的分享,楼主辛苦!
26楼2017-08-22 17:51:06
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
4743277682楼
2015-03-28 12:49   回复  
顶一下,感谢分享!
2015-03-28 23:05   回复  
五星好评  顶一下,感谢分享!
2015-03-29 19:30   回复  
五星好评  顶一下,感谢分享!
wwwzg5楼
2015-03-29 22:37   回复  
五星好评  顶一下,感谢分享!
吠陀6楼
2015-03-31 06:57   回复  
五星好评  顶一下,感谢分享!
kuangpan7楼
2015-03-31 12:01   回复  
五星好评  顶一下,感谢分享!
Quan.8楼
2015-04-01 06:14   回复  
五星好评  顶一下,感谢分享!
wsz109楼
2015-04-01 06:47   回复  
五星好评  
2015-04-01 07:48   回复  
五星好评  顶一下,感谢分享!
pumcnsy11楼
2015-04-01 07:58   回复  
五星好评  顶一下,感谢分享!
happyfishs13楼
2015-04-01 13:20   回复  
五星好评  顶一下,感谢分享!
yxie318914楼
2015-04-03 01:08   回复  
五星好评  顶一下,感谢分享!
parkzhu15楼
2015-04-03 02:22   回复  
五星好评  顶一下,感谢分享!
2015-04-25 16:39   回复  
五星好评  顶一下,感谢分享!
jyki17楼
2015-04-30 11:08   回复  
五星好评  顶一下,感谢分享!
Dirac201018楼
2015-04-30 12:53   回复  
五星好评  顶一下,感谢分享!
wangth092119楼
2015-04-30 15:56   回复  
顶一下,感谢分享!
yinby98920楼
2015-04-30 16:59   回复  
五星好评  顶一下,感谢分享!
luwangjun21楼
2015-06-28 20:33   回复  
三星好评  顶一下,感谢分享!
2015-06-29 23:01   回复  
五星好评  顶一下,感谢分享!
wwwzg23楼
2015-07-09 20:50   回复  
顶一下,感谢分享!
nrs51525楼
2017-08-22 17:50   回复  
顶一下,感谢分享!
happyfishs27楼
2017-09-08 13:36   回复  
顶一下,感谢分享!
wjy201128楼
2018-11-10 22:56   回复  
五星好评  顶一下,感谢分享!
ljb19721129楼
2020-08-03 06:43   回复  
五星好评  顶一下,感谢分享! 发自小木虫Android客户端
相关版块跳转 我要订阅楼主 pkusiyuan 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见