24小时热门版块排行榜    

查看: 440  |  回复: 1
【悬赏金币】回答本帖问题,作者aihua229将赠送您 100 个金币

aihua229

木虫 (著名写手)

NSFC

[求助] 基金摘要求助11201006

求助摘要的编号:
11201006
项目名称:
马尔可夫调节风险模型下有关保险精算的几个随机微分博弈问题
项目类型:
青年基金

» 猜你喜欢

开始用OLAY沐浴液,因为上面写着:NATURE&& SCIENCE!!!
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

raimi

铁杆木虫 (著名写手)

新生

【答案】应助回帖

马尔科夫调节风险模型下有关保险精算的几个随机微分博弈问题
批准号 11201006 学科代码1 经济数学与金融数学(A011402) 学科代码2 随机分析与随机过程(A011002)
负责人 徐林 职称 副教授  
单位名称 安徽师范大学
资助金额 22万元 研究性质 基础研究 起止年月 2013-01-01 - 2015-12-01
项目类别 青年科学基金项目  
摘要 马尔科夫调节风险模型的最优化问题在保险精算学尤其是风险理论中有着广泛应用。其中,完全观测的该模型下存在博弈时的最优化问题以及不完全观测的该模型下若干最优化问题的随机微分博弈方法是两个很有意义的课题。本项目拟对这两个问题展开研究,主要研究内容包括:拟发展HJBI方程的有关结果,结合粘性解理论给出马尔科夫调节风险模型的有关微分博弈问题值函数的存在性并完成验证性证明;讨论最优解的解析性,当没有解析解时,结合随机过程的弱收敛理论,完成最优解的算法设计与理论分析;对若干受约束的随机博弈问题,证明其值函数的存在性并展开相关数值方法的理论分析;对不完全观测的马尔科夫调节风险模型,通过信息与决策者之间的微分博弈,得到稳健的最优控制并完成相关理论分析。本项目不仅可以推动马尔科夫调节模型下随机微分博弈理论的基础研究,还可以进一步拓宽该理论在风险理论中的应用范围,提升其应用层次,因而兼具理论学术意义和应用价值。
主题词 马尔科夫调节风险模型;随机微分博弈;随机最优化;弱收敛;保险精算学
重新定位
2楼2015-04-10 22:16:03
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 aihua229 的主题更新
不应助 确定回帖应助 (注意:应助才可能被奖励,但不允许灌水,必须填写15个字符以上)
信息提示
请填处理意见