| 查看: 1171 | 回复: 12 | ||||||||
| 【奖励】 本帖被评价11次,作者pkusiyuan增加金币 8.6 个 | ||||||||
[资源]
2010Programming.Massively.Parallel.Processors
|
||||||||
|
Contents Preface ......................................................................................................................xi Acknowledgments ................................................................................................ xvii Dedication...............................................................................................................xix CHAPTER 1 INTRODUCTION................................................................................1 1.1 GPUs as Parallel Computers ..........................................................2 1.2 Architecture of a Modern GPU......................................................8 1.3 Why More Speed or Parallelism? ................................................10 1.4 Parallel Programming Languages and Models............................13 1.5 Overarching Goals ........................................................................15 1.6 Organization of the Book.............................................................16 CHAPTER 2 HISTORY OF GPU COMPUTING .....................................................21 2.1 Evolution of Graphics Pipelines ..................................................21 2.1.1 The Era of Fixed-Function Graphics Pipelines..................22 2.1.2 Evolution of Programmable Real-Time Graphics .............26 2.1.3 Unified Graphics and Computing Processors ....................29 2.1.4 GPGPU: An Intermediate Step...........................................31 2.2 GPU Computing ...........................................................................32 2.2.1 Scalable GPUs.....................................................................33 2.2.2 Recent Developments..........................................................34 2.3 Future Trends................................................................................34 CHAPTER 3 INTRODUCTION TO CUDA..............................................................39 3.1 Data Parallelism............................................................................39 3.2 CUDA Program Structure ............................................................41 3.3 A Matrix–Matrix Multiplication Example...................................42 3.4 Device Memories and Data Transfer...........................................46 3.5 Kernel Functions and Threading..................................................51 3.6 Summary.......................................................................................56 3.6.1 Function declarations ..........................................................56 3.6.2 Kernel launch ......................................................................56 3.6.3 Predefined variables ............................................................56 3.6.4 Runtime API........................................................................57 CHAPTER 4 CUDA THREADS.............................................................................59 4.1 CUDA Thread Organization ........................................................59 4.2 Using blockIdx and threadIdx ..........................................64 4.3 Synchronization and Transparent Scalability ..............................68 vii 4.4 Thread Assignment.......................................................................70 4.5 Thread Scheduling and Latency Tolerance .................................71 4.6 Summary .......................................................................................74 4.7 Exercises .......................................................................................74 CHAPTER 5 CUDA MEMORIES.......................................................................77 5.1 Importance of Memory Access Efficiency..................................78 5.2 CUDA Device Memory Types ....................................................79 5.3 A Strategy for Reducing Global Memory Traffic.......................83 5.4 Memory as a Limiting Factor to Parallelism ..............................90 5.5 Summary .......................................................................................92 5.6 Exercises .......................................................................................93 CHAPTER 6 PERFORMANCE CONSIDERATIONS................................................95 6.1 More on Thread Execution ..........................................................96 6.2 Global Memory Bandwidth........................................................103 6.3 Dynamic Partitioning of SM Resources ....................................111 6.4 Data Prefetching .........................................................................113 6.5 Instruction Mix ...........................................................................115 6.6 Thread Granularity .....................................................................116 6.7 Measured Performance and Summary .......................................118 6.8 Exercises .....................................................................................120 CHAPTER 7 FLOATING POINT CONSIDERATIONS ...........................................125 7.1 Floating-Point Format.................................................................126 7.1.1 Normalized Representation of M.....................................126 7.1.2 Excess Encoding of E.......................................................127 7.2 Representable Numbers ..............................................................129 7.3 Special Bit Patterns and Precision.............................................134 7.4 Arithmetic Accuracy and Rounding ..........................................135 7.5 Algorithm Considerations...........................................................136 7.6 Summary .....................................................................................138 7.7 Exercises .....................................................................................138 CHAPTER 8 APPLICATION CASE STUDY: ADVANCED MRI RECONSTRUCTION.......................................................................141 8.1 Application Background.............................................................142 8.2 Iterative Reconstruction..............................................................144 8.3 Computing FHd...........................................................................148 Step 1. Determine the Kernel Parallelism Structure .................149 Step 2. Getting Around the Memory Bandwidth Limitation....156 viii Contents Step 3. Using Hardware Trigonometry Functions ....................163 Step 4. Experimental Performance Tuning ...............................166 8.4 Final Evaluation..........................................................................167 8.5 Exercises .....................................................................................170 CHAPTER 9 APPLICATION CASE STUDY: MOLECULAR VISUALIZATION AND ANALYSIS............................................................................173 9.1 Application Background.............................................................174 9.2 A Simple Kernel Implementation ..............................................176 9.3 Instruction Execution Efficiency................................................180 9.4 Memory Coalescing....................................................................182 9.5 Additional Performance Comparisons .......................................185 9.6 Using Multiple GPUs .................................................................187 9.7 Exercises .....................................................................................188 CHAPTER 10 PARALLEL PROGRAMMING AND COMPUTATIONAL THINKING ....................................................................................191 10.1 Goals of Parallel Programming ...............................................192 10.2 Problem Decomposition ...........................................................193 10.3 Algorithm Selection .................................................................196 10.4 Computational Thinking...........................................................202 10.5 Exercises ...................................................................................204 CHAPTER 11 A BRIEF INTRODUCTION TO OPENCL ......................................205 11.1 Background...............................................................................205 11.2 Data Parallelism Model............................................................207 11.3 Device Architecture..................................................................209 11.4 Kernel Functions ......................................................................211 11.5 Device Management and Kernel Launch ................................212 11.6 Electrostatic Potential Map in OpenCL ..................................214 11.7 Summary...................................................................................219 11.8 Exercises ...................................................................................220 CHAPTER 12 CONCLUSION AND FUTURE OUTLOOK ........................................221 12.1 Goals Revisited.........................................................................221 12.2 Memory Architecture Evolution ..............................................223 12.2.1 Large Virtual and Physical Address Spaces ................223 12.2.2 Unified Device Memory Space ....................................224 12.2.3 Configurable Caching and Scratch Pad........................225 12.2.4 Enhanced Atomic Operations .......................................226 12.2.5 Enhanced Global Memory Access ...............................226 Contents ix 12.3 Kernel Execution Control Evolution .......................................227 12.3.1 Function Calls within Kernel Functions ......................227 12.3.2 Exception Handling in Kernel Functions.....................227 12.3.3 Simultaneous Execution of Multiple Kernels ..............228 12.3.4 Interruptible Kernels .....................................................228 12.4 Core Performance.....................................................................229 12.4.1 Double-Precision Speed ...............................................229 12.4.2 Better Control Flow Efficiency ....................................229 12.5 Programming Environment ......................................................230 12.6 A Bright Outlook......................................................................230 APPENDIX A MATRIX MULTIPLICATION HOST-ONLY VERSION SOURCE CODE .............................................................................233 A.1 matrixmul.cu........................................................................233 A.2 matrixmul_gold.cpp .........................................................237 A.3 matrixmul.h..........................................................................238 A.4 assist.h .................................................................................239 A.5 Expected Output .........................................................................243 APPENDIX B GPU COMPUTE CAPABILITIES ....................................................245 B.1 GPU Compute Capability Tables...............................................245 B.2 Memory Coalescing Variations..................................................246 Index......................................................................................................... 251 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : 大规模并行处理器程序设计.(Programming.Massively.Parallel.Processors.A.Hands-on.Approach),.Kirk,.Hwu,.文字版.pdf
2015-03-08 20:58:14, 4.74 M
» 收录本帖的淘帖专辑推荐
Algorithm | love physics | 电子书资料 | CUDA |
科研软件 |
» 猜你喜欢
孩子确诊有中度注意力缺陷
已经有12人回复
2025冷门绝学什么时候出结果
已经有3人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有4人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
AI论文写作工具:是科研加速器还是学术作弊器?
已经有3人回复
2026博士申请-功能高分子,水凝胶方向
已经有6人回复
论文投稿,期刊推荐
已经有4人回复
硕士和导师闹得不愉快
已经有13人回复
请问2026国家基金面上项目会启动申2停1吗
已经有5人回复
同一篇文章,用不同账号投稿对编辑决定是否送审有没有影响?
已经有3人回复
8楼2015-06-25 18:37:13
简单回复
tonyhi2楼
2015-03-08 21:34
回复
三星好评 谢谢分享 [ 发自小木虫客户端 ]
2015-03-09 07:09
回复
五星好评 顶一下,感谢分享!
2015-03-09 08:13
回复
五星好评 顶一下,感谢分享!
2015-03-09 08:52
回复
五星好评 顶一下,感谢分享!
2015-03-10 10:17
回复
五星好评 顶一下,感谢分享!
dbeak7楼
2015-06-25 18:24
回复
五星好评 顶一下,感谢分享!
2015-10-28 23:32
回复
五星好评 顶一下,感谢分享!
yinxzy10楼
2015-12-01 22:40
回复
五星好评 顶一下,感谢分享!
Nanobee11楼
2016-04-02 11:27
回复
五星好评 顶一下,感谢分享!
liu12333812楼
2016-10-17 11:34
回复
五星好评 顶一下,感谢分享!
逍遥学生TT13楼
2017-09-20 23:39
回复
五星好评 顶一下,感谢分享!













回复此楼