| 查看: 811 | 回复: 4 | ||
| 【奖励】 本帖被评价4次,作者pkusiyuan增加金币 3.2 个 | ||
[资源]
Cambridge2011Thermodynamics Of The Earth And Planets
|
||
|
Contents Preface page ix 1 Energy in planetary processes and the First Law of Thermodynamics 1 1.1 Some necessary definitions 2 1.2 Conservation of energy and different manifestations of energy 4 1.3 Mechanical energy. An introduction to dissipative and non-dissipative transformations 4 1.4 Expansion work. Introduction to equations of state 13 1.5 Isothermal and adiabatic processes. Dissipative vs. non-dissipative transformations redux 23 1.6 Elastic energy 24 1.7 Two complementary descriptions of nature: macroscopic and microscopic 26 1.8 Energy associated with electric and magnetic fields 27 1.9 Thermal energy and heat capacity 35 1.10 The First Law of Thermodynamics 39 1.11 Independent variables and material properties 40 1.12 Some applications of the First Law of Thermodynamics 41 1.13 Enthalpy associated with chemical reactions 49 1.14 Internal energy and the relationshipbetween macroscopic thermodynamics and the microscopic world 55 1.15 An overview of the properties of matter and equations of state 64 Exercises for Chapter 1 67 2 Energy sources in planetary bodies 70 2.1 Planetary heat flows 71 2.2 Dissipation of gravitational potential energy 73 2.3 Gravitational binding energy 75 2.4 Accretion 78 2.5 Contraction 89 2.6 Differentiation 96 2.7 Tidal dissipation of mechanical energy 103 2.8 Dissipation of electrical energy 112 2.9 Radioactive heating 116 Exercises for Chapter 2 120 3 Energy transfer processes in planetary bodies 122 3.1 Transport processes 124 3.2 Heat transport by diffusion 126 3.3 Heat diffusion and cooling of planetary bodies 137 v vi Contents 3.4 Convection as a heat engine 141 3.5 Planetary adiabats 145 3.6 Heat advection 148 3.7 Convection as a heat transport mechanism 153 3.8 Parametrization of convection in planetary interiors 165 3.9 Convection and cooling of solid planetary interiors 173 Exercises for Chapter 3 178 4The Second Law of Thermodynamics and thermodynamic potentials 181 4.1 An intuitive approach to entropy 181 4.2 The entropy postulate and the Second Law of Thermodynamics 183 4.3 The First Law of Thermodynamics revisited 185 4.4 Entropy generation and energy dissipation 186 4.5 Planetary convection and Carnot cycles 189 4.6 A microscopic view of entropy 196 4.7 The Third Law of Thermodynamics 206 4.8 Thermodynamic potentials 209 4.9 Gibbs free energy 223 Exercises for Chapter 4 227 5 Chemical equilibrium. Using composition as a thermodynamic variable 229 5.1 Chemical equilibrium 229 5.2 Equilibrium among pure chemical species 238 5.3 Phases of variable composition: chemical potential revisited 245 5.4 Partial molar properties 248 5.5 Generalized equilibrium condition. Activity and the equilibrium constant 253 5.6 Introduction to solution theory: ideal solutions 258 5.7 The geometric view of activity and Gibbs free energy of mixing 265 5.8 More complex ideal activity–composition relationships 266 5.9 Non-ideal solutions 274 Exercises for Chapter 5 285 6 Phase equilibrium and phase diagrams 287 6.1 The foundations of phase equilibrium 287 6.2 Analysis of phase equilibrium among phases of fixed composition 295 6.3 Phase diagrams in open systems 315 6.4 Equilibrium among phases of variable composition 325 6.5 Chemical equilibrium at first-order phase transitions 326 6.6 Discontinuous phase transitions in phases of variable composition 330 Exercises for Chapter 6 347 7 Critical phase transitions 349 7.1 An intuitive approach to critical phase transitions 349 7.2 Location of the critical mixing point 355 7.3 Calculation of non-dimensional solvi 359 7.4 Order–disorder phase transitions in crystalline solids 361 vii Contents 7.5 Analogies with other phase transitions 369 7.6 Landau theory of phase transitions 372 Exercises for Chapter 7 384 8 Equations of state for solids and the internal structure of terrestrial planets 386 8.1 An introduction to equations of state for solids 386 8.2 Macroscopic equations of state 388 8.3 Isothermal equations of state from interatomic potentials: the Born–Mie EOS 405 8.4 Thermal pressure 407 Exercises for Chapter 8 419 9 Thermodynamics of planetary volatiles 420 9.1 Fugacity and standard state fugacity 420 9.2 Liquid–vapor equilibrium. Critical phase transitions redux 428 9.3 The principle of corresponding states 440 9.4 Equations of state for real fluids at P–T conditions typical of the crusts and upper mantles of the terrestrial planets 442 9.5 Calculation of fugacity in fluid phases 450 9.6 Speciation in multicomponent volatile phases 459 9.7 Fluids at the conditions of giant planet interiors 473 Exercises for Chapter 9 475 10 Melting in planetary bodies 477 10.1 Principles of melting 477 10.2 Melting point depression. Eutectics, cotectics and peritectics 481 10.3 Partitioning of trace components between solids and melts 484 10.4 The effect of “impurities” on melting temperature 487 10.5 Melting in planetary interiors 494 10.6 Decompression melting 494 10.7 Open system melting 512 10.8 The nature of solid–melt equilibrium in icy satellites 517 Exercises for Chapter 10 521 11 Dilute solutions 522 11.1 Some properties of dilute solutions 522 11.2 Effects of dilute solutes on the properties of the solvent 529 11.3 Electrolyte dissociation 540 11.4 Thermodynamic formulation of electrolyte solutions 544 11.5 Speciation in ionic solutions. Iron solubility in ocean water as an example 554 11.6 Activity coefficients in electrolyte solutions 562 Exercises for Chapter 11 575 12 Non-equilibrium thermodynamics and rates of natural processes 577 12.1 Non-equilibrium thermodynamics 577 12.2 Chemical diffusion 581 viii Contents 12.3 Rate of chemical reactions 592 12.4 Controls on rate constants 609 12.5 An introduction to kinetics of heterogeneous processes 611 Exercises for Chapter 12 615 13 Topics in atmospheric thermodynamics and radiative energy transfer 616 13.1 Gravitational binding of planetary atmospheres 616 13.2 Equilibrium thermodynamics in a gravitational field 620 13.3 Radiative energy transfer 625 Exercises for Chapter 13 643 14Thermodynamics of life 645 14.1 Chemical evolution of post-nebular atmospheres 645 14.2 Thermodynamics of metabolic processes 657 14.3 Speculations about extraterrestrial life 665 14.4 Entropy and life 668 Exercise for Chapter 14 669 Appendix 1 Physical constants and other useful numbers and conversion factors 671 Appendix 2 Derivation of thermodynamic identities 672 References 675 Index 690 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Thermodynamics_Of_The_Earth_And_Planets_-_A_Douce_(Cambridge,_2011)_Bbs.pdf
2015-03-07 20:42:18, 5.39 M
» 猜你喜欢
河南大学纳米科学与材料工程学院2025年科研人员招聘启事
已经有0人回复
江苏科技大学2025年招聘公告
已经有4人回复
地球物理学和空间物理学论文润色/翻译怎么收费?
已经有171人回复
中国科学院华南植物园2025年各类人才招聘宣公告
已经有3人回复
ACS期刊投稿快要正式接受了,副主编提出引用已发表图片或数据引用的书面许可,求助!
已经有11人回复
香港中文大学(深圳)2025年招聘简章
已经有2人回复
» 本主题相关价值贴推荐,对您同样有帮助:
简单回复
dengxg682楼
2015-03-13 23:02
回复
五星好评 顶一下,感谢分享!
特尔莫3楼
2015-12-07 22:32
回复
五星好评 顶一下,感谢分享!
2017-04-30 15:25
回复
五星好评 顶一下,感谢分享!
2020-04-15 08:56
回复
五星好评 顶一下,感谢分享!













回复此楼