24小时热门版块排行榜    

CyRhmU.jpeg
查看: 6777  |  回复: 151
当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖

pkusiyuan

银虫 (正式写手)


[资源] Cambridge 2012Thermodynamics

CONTENTS
Preface page xv
Acknowledgments xvii
Nomenclature xix
1 BASIC CONCEPTS  1
1.1 Overview 1
1.2 Thermodynamic Systems 3
1.3 States and Properties 4
1.3.1 State of a System 4
1.3.2 Measurable and Derived Properties 4
1.3.3 Intensive and Extensive Properties 5
1.3.4 Internal and External Properties 5
1.4 Balances 6
1.5 Introduction to EES (Engineering Equation Solver) 8
1.6 Dimensions and Units 11
1.6.1 The SI and English Unit Systems 11
EXAMPLE 1.6-1: WEIGHT ON MARS 14
1.6.2 Working with Units in EES 14
EXAMPLE 1.6-2: POWER REQUIRED BY A VEHICLE 15
1.7 Specific Volume, Pressure, and Temperature 24
1.7.1 Specific Volume 24
1.7.2 Pressure 24
1.7.3 Temperature 26
References 28
Problems 28
2 THERMODYNAMIC PROPERTIES  34
2.1 Equilibrium and State Properties 34
2.2 General Behavior of Fluids 36
2.3 Property Tables 41
2.3.1 Saturated Liquid and Vapor 41
EXAMPLE 2.3-1: PRODUCTION OF A VACUUM BY CONDENSATION 45
2.3.2 Superheated Vapor 47
Interpolation 49
2.3.3 Compressed Liquid 50
2.4 EES Fluid Property Data 51
2.4.1 Thermodynamic Property Functions 51
v
vi Contents
EXAMPLE 2.4-1: THERMOSTATIC EXPANSION VALVE 55
2.4.2 Arrays and Property Plots 59
EXAMPLE 2.4-2: LIQUID OXYGEN TANK 63
2.5 The Ideal Gas Model 69
EXAMPLE 2.5-1: THERMALLY-DRIVEN COMPRESSOR 72
2.6 The Incompressible Substance Model 78
EXAMPLE 2.6-1: FIRE EXTINGUISHING SYSTEM 80
References 85
Problems 85
3 ENERGY AND ENERGY TRANSPORT  92
3.1 Conservation of Energy Applied to a Closed System 92
3.2 Forms of Energy 93
3.2.1 Kinetic Energy 93
3.2.2 Potential Energy 94
3.2.3 Internal Energy 94
3.3 Specific Internal Energy 94
3.3.1 Property Tables 95
3.3.2 EES Fluid Property Data 96
EXAMPLE 3.3-1: HOT STEAM EQUILIBRATING WITH COLD LIQUID WATER 96
3.3.3 Ideal Gas 101
3.3.4 Incompressible Substances 106
EXAMPLE 3.3-2: AIR IN A TANK 107
3.4 Heat 110
3.4.1 Heat Transfer Mechanisms 111
EXAMPLE 3.4-1: RUPTURE OF A HELIUM DEWAR 112
3.4.2 The Caloric Theory 115
3.5 Work 116
EXAMPLE 3.5-1: COMPRESSION OF AMMONIA 121
EXAMPLE 3.5-2: HELIUM BALLOON 129
3.6 What is Energy and How Can you Prove that it is Conserved? 133
References 137
Problems 137
4 GENERAL APPLICATION OF THE FIRST LAW  151
4.1 General Statement of the First Law 151
4.2 Specific Enthalpy 155
4.2.1 Property Tables 155
4.2.2 EES Fluid Property Data 156
4.2.3 Ideal Gas 156
4.2.4 Incompressible Substance 159
4.3 Methodology for Solving Thermodynamics Problems 159
EXAMPLE 4.3-1: PORTABLE COOLING SYSTEM 161
4.4 Thermodynamic Analyses of Steady-State Applications 163
4.4.1 Turbines 163
4.4.2 Compressors 165
4.4.3 Pumps 166
4.4.4 Nozzles 167
4.4.5 Diffusers 167
Contents vii
4.4.6 Throttles 168
4.4.7 Heat Exchangers 168
EXAMPLE 4.4-1: DE-SUPERHEATER IN AN AMMONIA REFRIGERATION SYSTEM 170
4.5 Analysis of Open Unsteady Systems 175
EXAMPLE 4.5-1: HYDROGEN STORAGE TANK FOR A VEHICLE 176
EXAMPLE 4.5-2: EMPTYING AN ADIABATIC TANK FILLED WITH IDEAL GAS 180
EXAMPLE 4.5-3: EMPTYING A BUTANE TANK 184
Reference 187
Problems 187
5 THE SECOND LAW OF THERMODYNAMICS  204
5.1 The Second Law of Thermodynamics 204
5.1.1 Second Law Statements 207
5.1.2 Continuous Operation 207
5.1.3 Thermal Reservoir 208
5.1.4 Equivalence of the Second Law Statements 209
5.2 Reversible and Irreversible Processes 210
EXAMPLE 5.2-1: REVERSIBLE AND IRREVERSIBLE WORK 214
5.3 Maximum Thermal Efficiency of Heat Engines and Heat Pumps 217
5.4 Thermodynamic Temperature Scale 220
EXAMPLE 5.4-1: THERMODYNAMIC TEMPERATURE SCALES 222
5.5 The Carnot Cycle 225
Problems 232
6 ENTROPY  237
6.1 Entropy, a Property of Matter 237
6.2 Fundamental Property Relations 241
6.3 Specific Entropy 243
6.3.1 Property Tables 243
6.3.2 EES Fluid Property Data 243
EXAMPLE 6.3-1: ENTROPY CHANGE DURING A PHASE CHANGE 244
6.3.3 Entropy Relations for Ideal Gases 245
EXAMPLE 6.3-2: SPECIFIC ENTROPY CHANGE FOR NITROGEN 247
6.3.4 Entropy Relations for Incompressible Substances 249
6.4 A General Statement of the Second Law of Thermodynamics 249
EXAMPLE 6.4-1: ENTROPY GENERATED BY HEATING WATER 254
6.5 The Entropy Balance 257
6.5.1 Entropy Generation 257
6.5.2 Solution Methodology 260
6.5.3 Choice of System Boundary 260
System Encloses all Irreversible Processes 261
EXAMPLE 6.5-1: AIR HEATING SYSTEM 262
System Excludes all Irreversible Processes 264
EXAMPLE 6.5-2: EMPTYING AN ADIABATIC TANK WITH IDEAL GAS (REVISITED) 265
6.6 Efficiencies of Thermodynamic Devices 266
6.6.1 Turbine Efficiency 266
EXAMPLE 6.6-1: TURBINE ISENTROPIC EFFICIENCY 267
EXAMPLE 6.6-2: TURBINE POLYTROPIC EFFICIENCY 270
6.6.2 Compressor Efficiency 277
viii Contents
EXAMPLE 6.6-3: INTERCOOLED COMPRESSION 278
6.6.3 Pump Efficiency 287
EXAMPLE 6.6-4: SOLAR POWERED LIVESTOCK PUMP 289
6.6.4 Nozzle Efficiency 292
EXAMPLE 6.6-5: JET-POWERED WAGON 294
6.6.5 Diffuser Efficiency 300
EXAMPLE 6.6-6: DIFFUSER IN A GAS TURBINE ENGINE 302
6.6.6 Heat Exchanger Effectiveness 305
EXAMPLE 6.6-7: ARGON REFRIGERATION CYCLE 308
Heat Exchangers with Constant Specific Heat Capacity 312
EXAMPLE 6.6-8: ENERGY RECOVERY HEAT EXCHANGER 316
References 322
Problems 322
7 EXERGY  350
7.1 Definition of Exergy and Second Law Efficiency 350
7.2 Exergy of Heat 351
EXAMPLE 7.2-1: SECOND LAW EFFICIENCY 353
7.3 Exergy of a Flow Stream 355
EXAMPLE 7.3-1: HEATING SYSTEM 358
7.4 Exergy of a System 361
EXAMPLE 7.4-1: COMPRESSED AIR POWER SYSTEM 364
7.5 Exergy Balance 367
EXAMPLE 7.5-1: EXERGY ANALYSIS OF A COMMERCIAL LAUNDRY FACILITY 369
7.6 Relation Between Exergy Destruction and Entropy Generation∗ (E1) 378
Problems 379
8 POWER CYCLES  385
8.1 The Carnot Cycle 385
8.2 The Rankine Cycle 388
8.2.1 The Ideal Rankine Cycle 388
Effect of Boiler Pressure 395
Effect of Heat Source Temperature 397
Effect of Heat Sink Temperature 397
8.2.2 The Non-Ideal Rankine Cycle 399
8.2.3 Modifications to the Rankine Cycle 405
Reheat 405
Regeneration 410
EXAMPLE 8.2-1: SOLAR TROUGH POWER PLANT 413
8.3 The Gas Turbine Cycle 426
8.3.1 The Basic Gas Turbine Cycle 427
Effect of Air-Fuel Ratio 433
Effect of Pressure Ratio and Turbine Inlet Temperature 434
Effect of Compressor and Turbine Efficiencies 437
8.3.2 Modifications to the Gas Turbine Cycle 437
Reheat and Intercooling 437
EXAMPLE 8.3-1: OPTIMAL INTERCOOLING PRESSURE 439
Recuperation 442
∗ Section can be found on the Web site that accompanies this book (www.cambridge.org/kleinandnellis).
Contents ix
EXAMPLE 8.3-2: GAS TURBINE ENGINE FOR SHIP PROPULSION 443
8.3.3 The Gas Turbine Engines for Propulsion 452
Turbojet Engine 452
EXAMPLE 8.3-3: TURBOJET ENGINE 454
Turbofan Engine 458
EXAMPLE 8.3-4: TURBOFAN ENGINE 460
Turboprop Engine 467
8.3.4 The Combined Cycle and Cogeneration 467
8.4 Reciprocating Internal Combustion Engines 468
8.4.1 The Spark-Ignition Reciprocating Internal Combustion Engine 468
Spark-Ignition, Four-Stroke Engine Cycle 469
Simple Model of Spark-Ignition, Four-Stroke Engine 472
Octane Number of Gasoline 477
EXAMPLE 8.4-1: POLYTROPIC MODEL WITH RESIDUAL COMBUSTION GAS 479
Spark-Ignition, Two-Stroke Internal Combustion Engine 488
8.4.2 The Compression-Ignition Reciprocating Internal Combustion Engine 491
EXAMPLE 8.4-2: TURBOCHARGED DIESEL ENGINE 493
8.5 The Stirling Engine 501
8.5.1 The Stirling Engine Cycle 502
8.5.2 Simple Model of the Ideal Stirling Engine Cycle∗ (E2) 504
8.6 Tradeoffs Between Power and Efficiency 505
8.6.1 The Heat Transfer Limited Carnot Cycle 505
8.6.2 Carnot Cycle using Fluid Streams as the Heat Source and Heat
Sink∗ (E3) 511
8.6.3 Internal Irreversibilities∗ (E4) 511
8.6.4 Application to other Cycles 511
References 512
Problems 512
9 REFRIGERATION AND HEAT PUMP CYCLES  529
9.1 The Carnot Cycle 529
9.2 The Vapor Compression Cycle 532
9.2.1 The Ideal Vapor Compression Cycle 532
Effect of Refrigeration Temperature 538
9.2.2 The Non-Ideal Vapor Compression Cycle 540
EXAMPLE 9.2-1: INDUSTRIAL FREEZER 542
EXAMPLE 9.2-2: INDUSTRIAL FREEZER DESIGN 545
9.2.3 Refrigerants 550
Desirable Refrigerant Properties 550
Positive Evaporator Gage Pressure 551
Moderate Condensing Pressure 551
Appropriate Triple Point and Critical Point Temperatures 551
High Density/Low Specific Volume at the Compressor Inlet 553
High Latent Heat (Specific Enthalpy Change) of Vaporization 553
High Dielectric Strength 553
Compatibility with Lubricants 553
Non-Toxic 554
Non-Flammable 554
∗ Section can be found on the Web site that accompanies this book (www.cambridge.org/kleinandnellis).
x Contents
Inertness and Stability 554
Refrigerant Naming Convention 554
Ozone Depletion and Global Warming Potential 556
9.2.4 Vapor Compression Cycle Modifications 557
Liquid-Suction Heat Exchanger 559
EXAMPLE 9.2-3: REFRIGERATION CYCLE WITH A LIQUID-SUCTION HEAT
EXCHANGER 560
Liquid Overfed Evaporator 564
Intercooled Cycle 567
Economized Cycle 568
Flash-Intercooled Cycle 571
EXAMPLE 9.2-4: FLASH INTERCOOLED CYCLE FOR A BLAST FREEZER 571
EXAMPLE 9.2-5: CASCADE CYCLE FOR A BLAST FREEZER 578
9.3 Heat Pumps 584
EXAMPLE 9.3-1: HEATING SEASON PERFORMANCE FACTOR 588
9.4 The Absorption Cycle 598
9.4.1 The Basic Absorption Cycle 598
9.4.2 Absorption Cycle Working Fluids∗ (E6) 601
9.5 Recuperative Cryogenic Cooling Cycles 601
9.5.1 The Reverse Brayton Cycle 603
9.5.2 The Joule-Thomson Cycle 611
9.5.3 Liquefaction Cycles∗ (E7) 614
9.6 Regenerative Cryogenic Cooling Cycles∗ (E8) 614
References 614
Problems 615
10 PROPERTY RELATIONS FOR PURE FLUIDS  629
10.1 Equations of State for Pressure, Volume, and Temperature 629
10.1.1 Compressibility Factor and Reduced Properties 630
10.1.2 Characteristics of the Equation of State 633
Limiting Ideal Gas Behavior 633
The Boyle Isotherm 633
Critical Point Behavior 634
10.1.3 Two-Parameter Equations of State 637
The van der Waals Equation of State 637
EXAMPLE 10.1-1: APPLICATION OF THE VAN DER WAALS EQUATION OF STATE 641
The Dieterici Equation of State 646
EXAMPLE 10.1-2: DIETERICI EQUATION OF STATE 646
The Redlich-Kwong Equation of State 649
The Redlich-Kwong-Soave (RKS) Equation of State 650
The Peng-Robinson (PR) Equation of State 651
EXAMPLE 10.1-3: PENG-ROBINSON EQUATION OF STATE 653
10.1.4 Multiple Parameter Equations of State 656
10.2 Application of Fundamental Property Relations 657
10.2.1 The Fundamental Property Relations 658
10.2.2 Complete Equations of State 659
EXAMPLE 10.2-1: USING A COMPLETE EQUATION OF STATE 660
EXAMPLE 10.2-2: THE REDUCED HELMHOLTZ EQUATION OF STATE 661
∗ Section can be found on the Web site that accompanies this book (www.cambridge.org/kleinandnellis).
Contents xi
10.3 Derived Thermodynamic Properties 670
10.3.1 Maxwell’s Relations 670
10.3.2 Calculus Relations for Partial Derivatives 672
10.3.3 Derived Relations for u, h, and s 673
EXAMPLE 10.3-1: ISOTHERMAL COMPRESSION PROCESS 676
10.3.4 Derived Relations for other Thermodynamic Quantities 681
EXAMPLE 10.3-2: SPEED OF SOUND OF CARBON DIOXIDE 682
10.3.5 Relations Involving Specific Heat Capacity 685
10.4 Methodology for Calculating u, h, and s 688
EXAMPLE 10.4-1: CALCULATING THE PROPERTIES OF ISOBUTANE 692
10.5 Phase Equilibria for Pure Fluids 697
10.5.1 Criterion for Phase Equilibrium 697
10.5.2 Relations between Properties during a Phase Change 699
EXAMPLE 10.5-1: EVALUATING A NEW REFRIGERANT 701
10.5.3 Estimating Saturation Properties using an Equation of State∗ (E9) 703
10.6 Fugacity 704
10.6.1 The Fugacity of Gases 706
Calculating Fugacity using the RKS and PR Equations of State∗ (E10) 708
10.6.2 The Fugacity of Liquids 708
References 710
Problems 710
11 MIXTURES AND MULTI-COMPONENT PHASE EQUILIBRIUM  721
11.1 P-v-T Relations for Ideal Gas Mixtures 721
11.1.1 Composition Relations 721
11.1.2 Mixture Rules for Ideal Gas Mixtures 723
11.2 Energy, Enthalpy, and Entropy for Ideal Gas Mixtures 726
11.2.1 Changes in Properties for Ideal Gas Mixtures with Fixed Composition 728
11.2.2 Enthalpy and Entropy Change of Mixing 729
EXAMPLE 11.2-1: POWER AND EFFICIENCY OF A GAS TURBINE 731
EXAMPLE 11.2-2: SEPARATING CO2 FROM THE ATMOSPHERE 734
11.3 P-v-T Relations for Non-Ideal Gas Mixtures 738
11.3.1 Dalton’s Rule 738
11.3.2 Amagat’s Rule 739
11.3.3 Empirical Mixing Rules 740
Kay’s Rule 740
Mixing Rules 741
EXAMPLE 11.3-1: SPECIFIC VOLUME OF A GAS MIXTURE 742
11.4 Energy and Entropy for Non-Ideal Gas Mixtures 746
11.4.1 Enthalpy and Entropy Changes of Mixing 746
11.4.2 Enthalpy and Entropy Departures 749
Molar Specific Enthalpy and Entropy Departures from a Two-Parameter
Equation of State∗ (E11) 751
11.4.3 Enthalpy and Entropy for Ideal Solutions 752
11.4.4 Enthalpy and Entropy using a Two-Parameter Equation of State 753
The RKS Equation of State∗ (E12) 753
The Peng-Robinson Equation of State 754
EXAMPLE 11.4-1: ANALYSIS OF A COMPRESSOR WITH A GAS MIXTURE 754
∗ Section can be found on the Web site that accompanies this book (www.cambridge.org/kleinandnellis).
xii Contents
11.4.5 Peng-Robinson Library Functions 764
EXAMPLE 11.4-2: ANALYSIS OF A COMPRESSOR WITH A GAS MIXTURE
(REVISITED) 765
11.5 Multi-Component Phase Equilibrium 769
11.5.1 Criterion of Multi-Component Phase Equilibrium∗ (E13) 769
11.5.2 Chemical Potentials 769
11.5.3 Evaluation of Chemical Potentials for Ideal Gas Mixtures 771
11.5.4 Evaluation of Chemical Potentials for Ideal Solutions∗ (E14) 772
11.5.5 Evaluation of Chemical Potentials for Liquid Mixtures∗ (E15) 772
11.5.6 Applications of Multi-Component Phase Equilibrium 773
EXAMPLE 11.5-1: USE OF A MIXTURE IN A REFRIGERATION CYCLE 776
11.6 The Phase Rule 783
References 784
Problems 784
12 PSYCHROMETRICS  791
12.1 Psychrometric Definitions 791
EXAMPLE 12.1-1: BUILDING AIR CONDITIONING SYSTEM 795
12.2 Wet Bulb and Adiabatic Saturation Temperatures 799
12.3 The Psychrometric Chart and EES’ Psychrometric Functions 802
12.3.1 Psychrometric Properties 802
12.3.2 The Psychrometric Chart 804
EXAMPLE 12.3-1: BUILDING AIR CONDITIONING SYSTEM (REVISITED) 808
12.3.3 Psychrometric Properties in EES 810
EXAMPLE 12.3-2: BUILDING AIR CONDITIONING SYSTEM (REVISITED AGAIN) 812
12.4 Psychrometric Processes for Comfort Conditioning 814
12.4.1 Humidification Processes 815
EXAMPLE 12.4-1: HEATING/HUMIDIFICATION SYSTEM 816
12.4.2 Dehumidification Processes 822
EXAMPLE 12.4-2: AIR CONDITIONING SYSTEM 823
12.4.3 Evaporative Cooling 827
12.4.4 Desiccants∗ (E16) 829
12.5 Cooling Towers 830
12.5.1 Cooling Tower Nomenclature 831
12.5.2 Cooling Tower Analysis 832
EXAMPLE 12.5-1: ANALYSIS OF A COOLING TOWER 834
12.6 Entropy for Psychrometric Mixtures∗ (E17) 838
References 838
Problems 838
13 COMBUSTION  852
13.1 Introduction to Combustion 852
13.2 Balancing Chemical Reactions 854
13.2.1 Air as an Oxidizer 855
13.2.2 Methods for Quantifying Excess Air 856
13.2.3 Psychrometric Issues 857
EXAMPLE 13.2-1: COMBUSTION OF A PRODUCER GAS 858
13.3 Energy Considerations 864
∗ Section can be found on the Web site that accompanies this book (www.cambridge.org/kleinandnellis).
Contents xiii
13.3.1 Enthalpy of Formation 864
13.3.2 Heating Values 866
EXAMPLE 13.3-1: HEATING VALUE OF A PRODUCER GAS 871
13.3.3 Enthalpy and Internal Energy as a Function of Temperature 873
EXAMPLE 13.3-2: PROPANE HEATER 875
13.3.4 Use of EES for Determining Properties 879
EXAMPLE 13.3-3: FURNACE EFFICIENCY 882
13.3.5 Adiabatic Reactions 889
EXAMPLE 13.3-4: DETERMINATION OF THE EXPLOSION PRESSURE OF METHANE 894
13.4 Entropy Considerations 898
EXAMPLE 13.4-1: PERFORMANCE OF A GAS TURBINE ENGINE 901
13.5 Exergy of Fuels∗ (E18) 907
References 907
Problems 908
14 CHEMICAL EQUILIBRIUM  922
14.1 Criterion for Chemical Equilibrium 922
14.2 Reaction Coordinates 924
EXAMPLE 14.2-1: SIMULTANEOUS CHEMICAL REACTIONS 927
14.3 The Law of Mass Action 931
14.3.1 The Criterion of Equilibrium in terms of Chemical Potentials 931
14.3.2 Chemical Potentials for an Ideal Gas Mixture 933
14.3.3 Equilibrium Constant and the Law of Mass Action for Ideal Gas Mixtures 933
EXAMPLE 14.3-1: REFORMATION OF METHANE 935
14.3.4 Equilibrium Constant and the Law of Mass Action for an Ideal Solution 938
EXAMPLE 14.3-2: AMMONIA SYNTHESIS 939
14.4 Alternative Methods for Chemical Equilibrium Problems 943
14.4.1 Direct Minimization of Gibbs Free Energy 944
EXAMPLE 14.4-1: REFORMATION OF METHANE (REVISITED) 945
14.4.2 Lagrange Method of Undetermined Multipliers 949
EXAMPLE 14.4-2: REFORMATION OF METHANE (REVISITED AGAIN) 951
14.5 Heterogeneous Reactions∗ (E19) 953
14.6 Adiabatic Reactions 954
EXAMPLE 14.6-1: ADIABATIC COMBUSTION OF HYDROGEN 954
EXAMPLE 14.6-2: ADIABATIC COMBUSTION OF ACETYLENE 960
Reference 967
Problems 967
15 STATISTICAL THERMODYNAMICS  972
15.1 A Brief Review of Quantum Theory History 973
15.1.1 Electromagnetic Radiation 973
15.1.2 Extension to Particles 975
15.2 The Wave Equation and Degeneracy for a Monatomic Ideal Gas 976
15.2.1 Probability of Finding a Particle 976
15.2.2 Application of a Wave Equation 976
15.2.3 Degeneracy 979
15.3 The Equilibrium Distribution 979
15.3.1 Macrostates and Thermodynamic Probability 980
∗ Section can be found on the Web site that accompanies this book (www.cambridge.org/kleinandnellis).
xiv Contents
15.3.2 Identification of the Most Probable Macrostate 982
15.3.3 The Significance of β 985
15.3.4 Boltzmann’s Law 987
15.4 Properties and the Partition Function 989
15.4.1 Definition of the Partition Function 989
15.4.2 Internal Energy from the Partition Function 990
15.4.3 Entropy from the Partition Function 991
15.4.4 Pressure from the Partition Function 992
15.5 Partition Function for an Monatomic Ideal Gas 993
15.5.1 Pressure for a Monatomic Ideal Gas 994
15.5.2 Internal Energy for a Monatomic Ideal Gas 995
15.5.3 Entropy for a Monatomic Ideal Gas 995
EXAMPLE 15.5-1: CALCULATION OF ABSOLUTE ENTROPY VALUES 997
15.6 Extension to More Complex Particles 998
15.7 Heat and Work from a Statistical Thermodynamics Perspective 1001
References 1004
Problems 1005
16 COMPRESSIBLE FLOW∗ (E20)  1009
Problems 1009
Appendices
A: Unit Conversions and Useful Information 1015
B: Property Tables for Water 1019
C: Property Tables for R134a 1031
D: Ideal Gas & Incompressible Substances 1037
E: Ideal Gas Properties of Air 1039
F: Ideal Gas Properties of Common Combustion Gases 1045
G: Numerical Solution to ODEs 1056
H: Introduction to Maple∗ (E26) 1057
Index 1059
回复此楼

» 本帖附件资源列表

  • 欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
    本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com
  • 附件 1 : Thermodynamics,.Sanford.A..Klein,.Nellis.Gregory,.CUP,.2012.pdf
  • 2015-03-03 12:21:58, 11.91 M

» 本帖已获得的红花(最新10朵)

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

缘梦翔

金虫 (正式写手)


★★★★★ 五星级,优秀推荐

热力学经典大作,感谢分享。这好用到EES (Engineering Equation Solver)
77楼2015-10-05 20:23:49
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
查看全部 152 个回答
简单回复
7528792902楼
2015-03-03 15:40   回复  
五星好评  顶一下,感谢分享!
nono20093楼
2015-03-03 16:03   回复  
五星好评  顶一下,感谢分享!
fbxie4楼
2015-03-03 19:58   回复  
五星好评  顶一下,感谢分享!
2015-03-03 21:46   回复  
五星好评  顶一下,感谢分享!
hebq6楼
2015-03-04 07:43   回复  
五星好评  顶一下,感谢分享!
wenhsien7楼
2015-03-04 08:17   回复  
五星好评  顶一下,感谢分享!
cqzzc8楼
2015-03-05 12:59   回复  
五星好评  顶一下,感谢分享!
zzgui8889楼
2015-03-05 13:29   回复  
五星好评  顶一下,感谢分享!
2015-03-07 10:48   回复  
五星好评  顶一下,感谢分享!
gongxd32511楼
2015-03-07 13:49   回复  
五星好评  顶一下,感谢分享!
monse581912楼
2015-03-08 00:09   回复  
五星好评  顶一下,感谢分享!
monse581913楼
2015-03-08 00:18   回复  
顶一下,感谢分享!
muxinjin14楼
2015-03-08 07:39   回复  
五星好评  顶一下,感谢分享!
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见