24小时热门版块排行榜    

查看: 1200  |  回复: 23
【奖励】 本帖被评价22次,作者pkusiyuan增加金币 17.6

pkusiyuan

银虫 (正式写手)


[资源] 剑桥2011Manipulating.Quantum.Structures.Using.Laser.Pulses

Preface page xi
Acknowledgments xiii
1 Introduction 1
1.1 Objective 1
1.2 Background 1
1.3 Measurables, observables, and parameters 2
1.4 Notation and nomenclature 5
1.5 Limitations of the theory 7
1.6 Basic references 8
2 Atoms as structured particles 9
2.1 Spectroscopy 10
2.2 Quantum states 13
2.3 Probabilities 15
3 Radiation 19
3.1 Thermal radiation; quanta 19
3.2 Cavities 20
3.3 Incoherent radiation 21
3.4 Laser radiation 22
3.5 Laser fields 23
3.6 Field vectors 31
3.7 Laser beams 40
3.8 Photons 41
3.9 Field restrictions 43
4 The laser–atom interaction 44
4.1 Individual atoms 44
4.2 Detecting excitation 50
v
vi Contents
4.3 The interaction energy; multipole moments 52
4.4 Moving atoms 54
5 Picturing quantum structure and changes 57
5.1 Free electrons: Ponderomotive energy 57
5.2 Picturing bound electrons 58
5.3 The Lorentz force 61
5.4 The wavefunction; orbitals 62
5.5 The statevector; Hilbert spaces 66
5.6 Two-state Hilbert spaces 69
5.7 Time-dependent statevectors 73
5.8 Picturing quantum transitions 76
6 Incoherence: Rate equations 78
6.1 Thermalized atoms; the Boltzmann equation 78
6.2 The radiative rate equations 79
6.3 The Einstein rates 79
6.4 The two-state rate equations 81
6.5 Solutions to the rate equations 81
6.6 Comments 83
7 Coherence: The Schrödinger equation 85
7.1 Essential states; effective Hamiltonians 87
7.2 The coupled differential equations 88
7.3 Classes of interaction 93
7.4 Classes of solutions 93
7.5 The time-evolution matrix; transition probabilities 95
8 Two-state coherent excitation 97
8.1 The basic equations 97
8.2 Abrupt start 104
8.3 The rotating-wave approximation (RWA) 108
8.4 Adiabatic time evolution 118
8.5 Comparison of excitation methods 135
9 Weak pulse: Perturbation theory 137
9.1 Weak resonant excitation 138
9.2 Pulse aftermath and frequency content 138
9.3 Example: Excitation despite missing frequencies 139
9.4 The Dirac (interaction) picture 141
9.5 Weak broadband radiation; transition rates 142
9.6 Fermi’s famous Golden Rule 144
10 The vector model 146
10.1 The Feynman–Vernon–Hellwarth equations 146
10.2 Coherence loss; relaxation 150
Contents vii
11 Sequential pulses 159
11.1 Contiguous pulses 159
11.2 Pulse trains 160
11.3 Examples 162
11.4 Pulse pairs 163
11.5 Vector picture of pulse pairs 165
11.6 Creating dressed states 167
11.7 Zero-area pulses 168
12 Degeneracy 171
12.1 Zeeman sublevels 171
12.2 Radiation polarization and selection rules 172
12.3 The RWA with degeneracy 177
12.4 Optical pumping 179
12.5 General angular momentum 181
13 Three states 186
13.1 Three-state linkages 186
13.2 The three-state RWA 188
13.3 Resonant chains 197
13.4 Detuning 201
13.5 Unequal Rabi frequencies 211
13.6 Laser-induced continuum structure (LICS) 218
14 Raman processes 222
14.1 The Raman Hamiltonian 222
14.2 Population transfer 223
14.3 Explaining STIRAP 230
14.4 Demonstrating STIRAP 235
14.5 Optimizing STIRAP pulses 237
14.6 Two-state versions of STIRAP 239
14.7 Extending STIRAP 243
15 Multilevel excitation 253
15.1 Multiphoton and multiple-photon ionization 253
15.2 Coherent excitation of N-state systems 255
15.3 Chains 259
15.4 Branches 277
15.5 Loops 287
15.6 Multilevel adiabatic time evolution 292
16 Averages and the statistical matrix (density matrix) 299
16.1 Ensembles and expectation values 299
16.2 Statistical averages 300
16.3 Environmental averages 302
viii Contents
16.4 Expectation values 304
16.5 Uncertainty relations 307
16.6 The density matrix 308
16.7 Density matrix equation of motion 313
16.8 Incorporating incoherent processes 317
16.9 Rotating coordinates 321
16.10 Multilevel generalizations 324
17 Systems with parts 331
17.1 Separability and factorization 331
17.2 Center of mass motion 333
17.3 Two parts 338
17.4 Correlation and entanglement 343
18 Preparing superpositions 347
18.1 Superposition construction 347
18.2 Nondegenerate states 348
18.3 Degenerate discrete states 350
18.4 Transferring superpositions 351
18.5 State manipulations using Householder
reflections 352
19 Measuring superpositions 357
19.1 General remarks 357
19.2 Spin matrices and quantum tomography 359
19.3 Two-state superpositions 362
19.4 Analyzing multistate superpositions 364
19.5 Analyzing three-state superpositions 366
19.6 Alternative procedures 368
20 Overall phase; interferometry and cyclic dynamics 370
20.1 Hilbert-space rays 371
20.2 Parallel transport 372
20.3 Phase definition 373
20.4 Michelson interferometry 374
20.5 Alternative interferometry 377
20.6 Ramsey interferometry 378
20.7 Cyclic systems 379
21 Atoms affecting fields 387
21.1 Induced dipole moments; propagation 387
21.2 Single field, N= 2 389
21.3 Multiple fields 402
21.4 Two or three fields, N = 3 403
Contents ix
21.5 Four fields, N = 4; four-wave mixing 410
21.6 Steady state; susceptibility 413
22 Atoms in cavities 419
22.1 The cavity 420
22.2 Two-state atoms in a cavity 423
22.3 Three-state atoms in a cavity 429
23 Control and optimization 435
23.1 Control theory 435
23.2 Quantum control 436
23.3 Optimization 439
Appendix A Angular momentum 442
A.1 Angular momentum states 442
A.2 Angular momentum coupling 451
A.3 Hyperfine linkages 456
Appendix B The multipole interaction 459
B.1 The bound-particle interaction 459
B.2 The multipole moments 462
B.3 Examples 464
B.4 Induced moments 464
B.5 Irreducible tensor form 465
B.6 Rabi frequencies 465
B.7 Angular momentum selection rules 466
Appendix C Classical radiation 468
C.1 The Lorentz force; Maxwell’s equations 468
C.2 Wave equations 470
C.3 Frequency components 476
C.4 The influence of matter 480
C.5 Pulse-mode expansions 482
Appendix D Quantized radiation 487
D.1 Field quantization 488
D.2 Mode fields 496
D.3 Photon states 505
D.4 The free-field radiation Hamiltonian 507
D.5 Interpretation of photons 509
Appendix E Adiabatic states 513
E.1 Terminology 513
E.2 Adiabatic evolution 515
E.3 The Dykhne–Davis–Pechukas (DDP) formula 519
x Contents
Appendix F Dark states; the Morris–Shore transformation 522
F.1 The Morris–Shore transformation 522
F.2 Bright and dark states 524
F.3 Fan linkages 526
F.4 Chain linkages 526
F.5 Generalizations 527
Appendix G Near-periodic excitation; Floquet theory 528
G.1 Floquet’s theorem 528
G.2 Example: Two states 530
G.3 Floquet theory and the RWA 531
G.4 Floquet theory and the Jaynes–Cummings model 531
G.5 Near-periodic excitation; adiabatic Floquet theory 532
G.6 Example: Two states 534
G.7 Adiabatic Floquet energy surfaces 536
Appendix H Transitions; spectroscopic parameters 537
H.1 Spectroscopic parameters 537
H.2 Relative transition strengths 538
References 542
Index 565
回复此楼

» 本帖附件资源列表

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

june339

新虫 (初入文坛)


★★★★★ 五星级,优秀推荐

顶一下,感谢分享! 非常实用
9楼2015-05-05 14:56:38
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

Sunshine_1

银虫 (小有名气)


★★★★★ 五星级,优秀推荐

顶一下,感谢分享! 非常实用
10楼2015-05-05 20:19:42
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
2015-03-02 21:44   回复  
五星好评  顶一下,感谢分享!
2015-03-04 18:29   回复  
五星好评  顶一下,感谢分享!
kuangpan4楼
2015-03-05 10:07   回复  
五星好评  顶一下,感谢分享!
2015-03-05 16:00   回复  
五星好评  顶一下,感谢分享!
ha16686楼
2015-03-06 19:28   回复  
五星好评  顶一下,感谢分享!
wwwzg7楼
2015-03-08 10:37   回复  
五星好评  顶一下,感谢分享!
crane_zh8楼
2015-04-10 04:02   回复  
五星好评  顶一下,感谢分享!
Sunshine_111楼
2015-05-05 20:20   回复  
顶一下,感谢分享!
qiuhunwu12楼
2015-05-17 14:52   回复  
五星好评  顶一下,感谢分享!
hasan13楼
2015-05-17 19:48   回复  
五星好评  顶一下,感谢分享!
huarjun14楼
2015-05-18 08:53   回复  
五星好评  顶一下,感谢分享!
dirachaha15楼
2015-06-01 20:47   回复  
五星好评  顶一下,感谢分享!
2015-06-02 09:57   回复  
五星好评  顶一下,感谢分享!
2016-01-12 19:27   回复  
五星好评  顶一下,感谢分享!
2017-03-05 17:39   回复  
五星好评  顶一下,感谢分享!
40283570119楼
2017-11-08 16:21   回复  
五星好评  顶一下,感谢分享!
wenglf987620楼
2018-05-03 23:06   回复  
五星好评  顶一下,感谢分享!
Quan.21楼
2018-05-09 05:35   回复  
五星好评  顶一下,感谢分享!
huai22楼
2018-05-09 20:29   回复  
五星好评  顶一下,感谢分享!
hhxyww23楼
2020-03-22 13:32   回复  
五星好评  顶一下,感谢分享!
ljb19721124楼
2020-07-21 04:31   回复  
五星好评  顶一下,感谢分享! 发自小木虫Android客户端
相关版块跳转 我要订阅楼主 pkusiyuan 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复 (可上传附件)
信息提示
请填处理意见