| 查看: 1154 | 回复: 5 | |||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | |||
cdlbcbc金虫 (小有名气)
|
[交流]
任何两个≥3的非奇质数之和均可分解为两个奇质数之和,怎么证明。 已有5人参与
|
||
| 任何两个≥3的非奇质数之和均可分解为两个奇质数之和,怎么证明? |
» 猜你喜欢
最近几年招的学生写论文不引自己组发的文章
已经有5人回复
职称评审没过,求安慰
已经有54人回复
26申博自荐
已经有3人回复
A期刊撤稿
已经有4人回复
» 本主题相关价值贴推荐,对您同样有帮助:
大偶数表为一个素数及一个不超过二个素数的乘积之和
已经有19人回复
Euler 工程 第十题:计算小于2百万的所有质数的和
已经有6人回复
【转载】p(素数)个元素的有限域上的n阶可逆矩阵的个数是多少?如何考虑?
已经有4人回复
连续统假说i
木虫 (正式写手)
- 应助: 3 (幼儿园)
- 金币: 2780.5
- 散金: 5562
- 红花: 4
- 帖子: 489
- 在线: 99小时
- 虫号: 1446174
- 注册: 2011-10-17
- 专业: 代数学

6楼2015-03-05 09:27:01
jianliu67
木虫 (小有名气)
- 应助: 27 (小学生)
- 金币: 4053.5
- 红花: 4
- 帖子: 216
- 在线: 135.7小时
- 虫号: 3511817
- 注册: 2014-11-01
- 性别: GG
- 专业: 计算机科学的基础理论
3楼2015-02-28 08:58:47
peterflyer
木虫之王 (文学泰斗)
peterflyer
- 数学EPI: 10
- 应助: 20282 (院士)
- 金币: 145833
- 红花: 1374
- 帖子: 93082
- 在线: 7693.9小时
- 虫号: 1482829
- 注册: 2011-11-08
- 性别: GG
- 专业: 功能陶瓷
4楼2015-02-28 11:38:56
fangston
新虫 (正式写手)
- 应助: 1 (幼儿园)
- 金币: 1748.1
- 散金: 77
- 红花: 6
- 帖子: 354
- 在线: 69.2小时
- 虫号: 2891255
- 注册: 2013-12-24
- 专业: 电力系统
5楼2015-02-28 11:58:21













回复此楼