24小时热门版块排行榜    

CyRhmU.jpeg
查看: 434  |  回复: 1
【奖励】 本帖被评价1次,作者pkusiyuan增加金币 0.8

pkusiyuan

银虫 (正式写手)


[资源] Imperial2006年A Mathematical Theory of Large-scale Atmosphere ocean Flow

Preface vii
2 . The governing equations and asymptotic approximations
to them 11
2.1 The governing equations . . . . . . . . . . . . . . . . . . . . 11
2.2 Key asymptotic regimes . . . . . . . . . . . . . . . . . . . . 14
2.3 Derivation of the semi-geostrophic approximation . . . . . . 18
2.4 Various approximations to the shallow water equations . . . 21
2.4.1 The shallow water equations . . . . . . . . . . . . . . 21
2.4.2 Key parameters . . . . . . . . . . . . . . . . . . . . . 22
2.4.3 General equations for slow solutions . . . . . . . . . 26
2.4.4 Slow solutions on small scales . . . . . . . . . . . . . 30
2.4.5 Quasi-geostrophic solutions . . . . . . . . . . . . . . 33
2.4.6 Slow solutions on large scales . . . . . . . . . . . . . 36
2.5 Various approximations to the three-dimensional hydrostatic
Boussinesq equations . . . . . . . . . . . . . . . . . . . . . . 41
2.5.1 The hydrostatic Boussinesq equations . . . . . . . . . 41
2.5.2 Key parameters . . . . . . . . . . . . . . . . . . . . . 42
2.5.3 General equations for slow solutions . . . . . . . . . 43
2.5.4 Slow solutions on with large aspect ratio . . . . . . . 46
2.5.5 Quasi-geostrophic solutions . . . . . . . . . . . . . . 48
2.5.6 Slow solutiolls with small aspect ratio . . . . . . . . 53
3 . Solution of the semi-geostrophic equations in plane geometry 57
xii Contents
3.1 The solution as a sequence of minimum energy states . . . . 57
3.1.1 The evolution equation for the geopotential . . . . . 57
3.1.2 Solutions as minimum energy energy states . . . . . 59
3.1.3 Physical meaning of the energy minimisation . . . . 61
3.2 Solution as a mass transportation problem . . . . . . . . . . 64
3.2.1 Solutioil by change of variables . . . . . . . . . . . . 64
3.2.2 The equations in dual variables . . . . . . . . . . . . 66
3.2.3 Consequences of the duality relation . . . . . . . . . 70
3.3 The shallow water semi-geostrophic equations . . . . . . . . 76
3.3.1 Solutions as minimum energy states . . . . . . . . . . 76
3.3.2 Solution by change of variables . . . . . . . . . . . . 79
3.3.3 The equations in dual variables . . . . . . . . . . . . 80
3.3.4 Consequences of the duality relation . . . . . . . . . 81
3.4 A discrete solution of the semi-geostrophic equations . . . . 84
3.4.1 The discrete problem . . . . . . . . . . . . . . . . . . 84
3.4.2 Example: frontogenesis . . . . . . . . . . . . . . . . . 90
3.4.3 Example: outcropping . . . . . . . . . . . . . . . . . 95
3.5 Rigorous results on existence of solutions . . . . . . . . . . 98
3.5.1 Solutions of the mass transport problem . . . . . . . 98
3.5.2 Existence of semi-geostrophic solutions in dual variables105
3.5.3 Solutions in physical variables . . . . . . . . . . . . . 111
4 . Solution of the semi-geostrophic equations in more general
cases 117
4.1 Solution of the semi-geostrophic equations for compressible
flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1 The compressible equations in Cartesian geometry .
4.1.2 The solution as a sequence of minimum energy states
4.1.3 Solution by change of variables . . . . . . . . . . . .
4.1.4 The equations in dual variables . . . . . . . . . . . .
4.1.5 Rigorous weak existence results . . . . . . . . . . . .
4.2 Spherical semi-geostrophic theory . . . . . . . . . . . . . . .
4.3 The shallow water spherical semi-geostrophic equations . .
4.3.1 Solution procedure . . . . . . . . . . . . . . . . . . .
4.3.2 Demonstration of the solution procedure . . . . . . .
4.4 The theory of almost axisymmetric flows . . . . . . . . . . .
4.4.1 Minimum energy states for axisymmetric flows . . .
4.4.2 Theories for non-misymmetric flow . . . . . . . . . .
... Contents xlll
5 . Properties of semi-geostrophic solutions 163
5.1 The applicability of semi-geostrophic theory . . . . . . . . . 163
5.1.1 Error estimates . . . . . . . . . . . . . . . . . . . . . 163
5.1.2 Experimental verification of error estimates . . . . . 170
5.2 Stability theorems for semi-geostrophic flow . . . . . . . . . 175
5.2.1 Extremising the energy by rearrangement of the po-
tentid density . . . . . . . . . . . . . . . . . . . . . . 175
5.2.2 Properties of rearrangements . . . . . . . . . . . . . 179
5.2.3 Analysis of semi-geostrophic shear flows . . . . . . . 184
5 -3 Numerical methods for solving the semi-geost rophic equations 190
5.3.1 Solutions using the geostrophic coordinate transfor-
mation . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.3.2 The geometric method . . . . . . . . . . . . . . . . . 193
5.3.3 Finite difference methods . . . . . . . . . . . . . . . 194
6 . Application of semi-geostrophic theory to the predictability
of atmospheric flows 20 1
6.1 Application to shallow water flow on various scales . . . . . 201
6.2 The Eady wave . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.3 Simulations of baroclinic waves . . . . . . . . . . . . . . . . 213
6.4 Semi-geostrophic flows on the sphere . . . . . . . . . . . . . 219
6.5 Orographic flows . . . . . . . . . . . . . . . . . . . . . . . . 223
6.6 Inclusion of friction . . . . . . . . . . . . . . . . . . . . . . . 228
6.7 Inclusion of moisture . . . . . . . . . . . . . . . . . . . . . . 234
7 . Summary 243
Bibliography 245
Index 25 5
回复此楼

» 本帖附件资源列表

» 猜你喜欢

» 本主题相关价值贴推荐,对您同样有帮助:

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
wwe_shan2楼
2017-08-02 00:19   回复  
五星好评  顶一下,感谢分享!
相关版块跳转 我要订阅楼主 pkusiyuan 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见