24小时热门版块排行榜    

CyRhmU.jpeg
查看: 1480  |  回复: 19
【奖励】 本帖被评价18次,作者pkusiyuan增加金币 14.4

pkusiyuan

银虫 (正式写手)


[资源] 剑桥2010年Numerical.Relativity.Solving.Einstein's.Equations.on.the.Computer

Aimed at students and researchers entering the field, this pedagogical introduction
to numerical relativity will also interest scientists seeking a broad survey of its
challenges and achievements. Assuming only a basic knowledge of classical general
relativity, this textbook develops the mathematical formalism from first principles,
then highlights some of the pioneering simulations involving black holes and neutron
stars, gravitational collapse and gravitational waves.
The book contains 300 exercises to help readers master new material as it is
presented. Numerous illustrations, many in color, assist in visualizing new geometric
concepts and highlighting the results of computer simulations. Summary boxes
encapsulate some of the most important results for quick reference. Applications covered
include calculations of coalescing binary black holes and binary neutron stars,
rotating stars, colliding star clusters, gravitational and magnetorotational collapse,
critical phenomena, the generation of gravitational waves, and other topics of current
physical and astrophysical significance.
ThomasW. Baumgarte is a Professor of Physics at Bowdoin College and an Adjunct
Professor of Physics at the University of Illinois at Urbana-Champaign. He received
his Diploma (1993) and Doctorate (1995) from Ludwig-Maximilians-Universit¨at,
M¨unchen, and held postdoctoral positions at Cornell University and the University
of Illinois before joining the faculty at Bowdoin College. He is a recipient of a
John Simon Guggenheim Memorial Foundation Fellowship. He has written over 70
research articles on a variety of topics in general relativity and relativistic astrophysics,
including black holes and neutron stars, gravitational collapse, and more formal
mathematical issues.
Stuart L. Shapiro is a Professor of Physics and Astronomy at the University of
Illinois at Urbana-Champaign. He received his A.B from Harvard (1969) and his
Ph.D. from Princeton (1973). He has published over 340 research articles spanning
many topics in general relativity and theoretical astrophysics and coauthored the
widely used textbook Black Holes, White Dwarfs and Neutron Stars: The Physics of
Compact Objects (JohnWiley, 1983). In addition to numerical relativity, Shapiro has
worked on the physics and astrophysics of black holes and neutron stars, relativistic
hydrodynamics, magnetohydrodynamics and stellar dynamics, and the generation of
gravitational waves. He is a recipient of an IBM Supercomputing Award, a Forefronts
of Large-Scale Computation Award, an Alfred P. Sloan Research Fellowship, a John
Simon Guggenheim Memorial Foundation Fellowship, and several teaching citations.
He has served on the editorial boards of The Astrophysical Journal Letters and
Classical and Quantum Gravity. Hewas elected Fellowof both the American Physical
Society and Institute of Physics (UK).
1 General relativity preliminaries 1
1.1 Einstein’s equations in 4-dimensional spacetime 1
1.2 Black holes 9
1.3 Oppenheimer–Volkoff spherical equilibrium stars 15
1.4 Oppenheimer–Snyder spherical dust collapse 18
2 The3+1 decompostion of Einstein’s equations 23
2.1 Notation and conventions 26
2.2 Maxwell’s equations in Minkowski spacetime 27
2.3 Foliations of spacetime 29
2.4 The extrinsic curvature 33
2.5 The equations of Gauss, Codazzi and Ricci 36
2.6 The constraint and evolution equations 39
2.7 Choosing basis vectors: the ADM equations 43
3 Constructing initial data 54
3.1 Conformal transformations 56
3.1.1 Conformal transformation of the spatial metric 56
3.1.2 Elementary black hole solutions 57
3.1.3 Conformal transformation of the extrinsic
curvature 64
3.2 Conformal transverse-traceless decomposition 67
3.3 Conformal thin-sandwich decomposition 75
3.4 A step further: the “waveless” approximation 81
3.5 Mass, momentum and angular momentum 83
4 Choosing coordinates: the lapse and shift 98
4.1 Geodesic slicing 100
4.2 Maximal slicing and singularity avoidance 103
4.3 Harmonic coordinates and variations 111
v
vi Contents
4.4 Quasi-isotropic and radial gauge 114
4.5 Minimal distortion and variations 117
5 Matter sources 123
5.1 Vacuum 124
5.2 Hydrodynamics 124
5.2.1 Perfect gases 124
5.2.2 Imperfect gases 139
5.2.3 Radiation hydrodynamics 141
5.2.4 Magnetohydrodynamics 148
5.3 Collisionless matter 163
5.4 Scalar fields 175
6 Numerical methods 183
6.1 Classification of partial differential equations 183
6.2 Finite difference methods 188
6.2.1 Representation of functions and derivatives 188
6.2.2 Elliptic equations 191
6.2.3 Hyperbolic equations 200
6.2.4 Parabolic equations 209
6.2.5 Mesh refinement 211
6.3 Spectral methods 213
6.3.1 Representation of functions and derivatives 213
6.3.2 A simple example 214
6.3.3 Pseudo-spectral methods with Chebychev polynomials 217
6.3.4 Elliptic equations 219
6.3.5 Initial value problems 223
6.3.6 Comparison with finite-difference methods 224
6.4 Code validation and calibration 225
7 Locating black hole horizons 229
7.1 Concepts 229
7.2 Event horizons 232
7.3 Apparent horizons 235
7.3.1 Spherical symmetry 240
7.3.2 Axisymmetry 241
7.3.3 General case: no symmetry assumptions 246
7.4 Isolated and dynamical horizons 249
8 Spherically symmetric spacetimes 253
8.1 Black holes 256
8.2 Collisionless clusters: stability and collapse 266
8.2.1 Particle method 267
8.2.2 Phase space method 289
Contents vii
8.3 Fluid stars: collapse 291
8.3.1 Misner–Sharp formalism 294
8.3.2 The Hernandez–Misner equations 297
8.4 Scalar field collapse: critical phenomena 303
9 Gravitational waves 311
9.1 Linearized waves 311
9.1.1 Perturbation theory and the weak-field,
slow-velocity regime 312
9.1.2 Vacuum solutions 319
9.2 Sources 323
9.2.1 The high frequency band 324
9.2.2 The low frequency band 328
9.2.3 The very low and ultra low frequency bands 330
9.3 Detectors and templates 331
9.3.1 Ground-based gravitational wave
interferometers 332
9.3.2 Space-based detectors 334
9.4 Extracting gravitational waveforms 337
9.4.1 The gauge-invariant Moncrief formalism 338
9.4.2 The Newman–Penrose formalism 346
10 Collapse of collisionless clusters in axisymmetry 352
10.1 Collapse of prolate spheroids to spindle singularities 352
10.2 Head-on collision of two black holes 359
10.3 Disk collapse 364
10.4 Collapse of rotating toroidal clusters 369
11 Recasting the evolution equations 375
11.1 Notions of hyperbolicity 376
11.2 Recasting Maxwell’s equations 378
11.2.1 Generalized Coulomb gauge 379
11.2.2 First-order hyperbolic formulations 380
11.2.3 Auxiliary variables 381
11.3 Generalized harmonic coordinates 381
11.4 First-order symmetric hyperbolic formulations 384
11.5 The BSSN formulation 386
12 Binary black hole initial data 394
12.1 Binary inspiral: overview 395
12.2 The conformal transverse-traceless approach: Bowen–York 403
12.2.1 Solving the momentum constraint 403
12.2.2 Solving the Hamiltonian constraint 405
12.2.3 Identifying circular orbits 407
viii Contents
12.3 The conformal thin-sandwich approach 410
12.3.1 The notion of quasiequilibium 410
12.3.2 Quasiequilibrium black hole boundary conditions 413
12.3.3 Identifying circular orbits 419
12.4 Quasiequilibrium sequences 421
13 Binary black hole evolution 429
13.1 Handling the black hole singularity 430
13.1.1 Singularity avoiding coordinates 430
13.1.2 Black hole excision 431
13.1.3 The moving puncture method 432
13.2 Binary black hole inspiral and coalescence 436
13.2.1 Equal-mass binaries 437
13.2.2 Asymmetric binaries, spin and black hole recoil 445
14 Rotating stars 459
14.1 Initial data: equilibrium models 460
14.1.1 Field equations 460
14.1.2 Fluid stars 461
14.1.3 Collisionless clusters 471
14.2 Evolution: instabilities and collapse 473
14.2.1 Quasiradial stability and collapse 473
14.2.2 Bar-mode instability 478
14.2.3 Black hole excision and stellar collapse 481
14.2.4 Viscous evolution 491
14.2.5 MHD evolution 495
15 Binary neutron star initial data 506
15.1 Stationary fluid solutions 506
15.1.1 Newtonian equations of stationary equilibrium 508
15.1.2 Relativistic equations of stationary equilibrium 512
15.2 Corotational binaries 514
15.3 Irrotational binaries 523
15.4 Quasiadiabatic inspiral sequences 530
16 Binary neutron star evolution 533
16.1 Peliminary studies 534
16.2 The conformal flatness approximation 535
16.3 Fully relativistic simulations 545
17 Binary black hole–neutron stars: initial data and evolution 562
17.1 Initial data 565
17.1.1 The conformal thin-sandwich approach 565
17.1.2 The conformal transverse-traceless approach 572
Contents ix
17.2 Dynamical simulations 574
17.2.1 The conformal flatness approximation 574
17.2.2 Fully relativistic simulations 578
18 Epilogue 596
A Lie derivatives, Killing vectors, and tensor densities 598
A.1 The Lie derivative 598
A.2 Killing vectors 602
A.3 Tensor densities 603
B Solving the vector Laplacian 607
C The surface element on the apparent horizon 609
D Scalar, vector and tensor spherical harmonics 612
E Post-Newtonian results 616
F Collisionless matter evolution in axisymmetry: basic equations 629
G Rotating equilibria: gravitational field equations 634
H Moving puncture representions of Schwarzschild: analytical results 637
I Binary black hole puncture simulations as test problems 642
References 647
Index 684
回复此楼

» 本帖附件资源列表

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

200911161003

新虫 (初入文坛)


★★★★★ 五星级,优秀推荐

Looks nice!!!
15楼2016-06-08 16:24:32
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

200911161003

新虫 (初入文坛)


16楼2016-06-08 16:32:51
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

atwoodcloyd

新虫 (著名写手)


★★★★★ 五星级,优秀推荐

谢谢你的分享,跟随作者追寻爱因斯坦足迹。。。
19楼2019-05-22 21:07:02
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
简单回复
2015-02-02 03:48   回复  
五星好评  顶一下,感谢分享!
zeronone3楼
2015-02-04 09:13   回复  
五星好评  顶一下,感谢分享!
sands19784楼
2015-02-05 20:13   回复  
五星好评  顶一下,感谢分享!
董建军5楼
2015-02-07 18:05   回复  
五星好评  顶一下,感谢分享!
dhexie6楼
2015-02-12 17:55   回复  
五星好评  顶一下,感谢分享!
2015-02-20 20:28   回复  
五星好评  顶一下,感谢分享!
skf08楼
2015-03-04 15:01   回复  
五星好评  顶一下,感谢分享!
2015-03-06 13:45   回复  
五星好评  顶一下,感谢分享!
2015-03-08 14:26   回复  
五星好评  顶一下,感谢分享!
cooooldog11楼
2015-03-11 11:02   回复  
五星好评  顶一下,感谢分享!
twdd_blue12楼
2015-05-01 08:56   回复  
五星好评  顶一下,感谢分享!
2016-02-22 12:34   回复  
五星好评  顶一下,感谢分享!
bluelgr14楼
2016-06-06 13:53   回复  
五星好评  顶一下,感谢分享!
jxp061817楼
2018-10-09 21:47   回复  
五星好评  顶一下,感谢分享!
fortran_1918楼
2019-03-11 11:35   回复  
五星好评  顶一下,感谢分享!
yuansu8820楼
2023-05-18 09:15   回复  
五星好评  顶一下,感谢分享!
相关版块跳转 我要订阅楼主 pkusiyuan 的主题更新
☆ 无星级 ★ 一星级 ★★★ 三星级 ★★★★★ 五星级
普通表情 高级回复(可上传附件)
信息提示
请填处理意见