| 查看: 1808 | 回复: 24 | ||||||
| 【奖励】 本帖被评价23次,作者pkusiyuan增加金币 18.2 个 | ||||||
| 当前只显示满足指定条件的回帖,点击这里查看本话题的所有回帖 | ||||||
[资源]
剑桥2010年英文原版Special.Functions-.A.Graduate.Text
|
||||||
|
The subject of special functions is often presented as a collection of disparate results, which are rarely organized in a coherent way. This book answers the need for a different approach to the subject. The authors’ main goals are to emphasize general unifying principles and to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more, including chapters on discrete orthogonal polynomials and elliptic functions. The authors show how a very large part of the subject traces back to two equations – the hypergeometric equation and the confluent hypergeometric equation – and describe the various ways in which these equations are canonical and special. Each chapter closes with a summary that provides both a convenient guide to the logical development and a useful compilation of the formulas. This book serves as an ideal graduate-level textbook as well as a convenient reference. Richard Beals is Professor Emeritus of Mathematics at Yale University. Roderick Wong is Professor of Mathematics and Vice President for Research at City University of Hong Kong. 1 Orientation 1 1.1 Power series solutions 2 1.2 The gamma and beta functions 5 1.3 Three questions 6 1.4 Elliptic functions 10 1.5 Exercises 11 1.6 Summary 14 1.7 Remarks 16 2 Gamma, beta, zeta 18 2.1 The gamma and beta functions 19 2.2 Euler’s product and reflection formulas 22 2.3 Formulas of Legendre and Gauss 26 2.4 Two characterizations of the gamma function 28 2.5 Asymptotics of the gamma function 29 2.6 The psi function and the incomplete gamma function 33 2.7 The Selberg integral 36 2.8 The zeta function 40 2.9 Exercises 43 2.10 Summary 50 2.11 Remarks 56 3 Second-order differential equations 57 3.1 Transformations, symmetry 58 3.2 Existence and uniqueness 61 3.3 Wronskians, Green’s functions, comparison 63 v vi Contents 3.4 Polynomials as eigenfunctions 66 3.5 Maxima, minima, estimates 72 3.6 Some equations of mathematical physics 74 3.7 Equations and transformations 78 3.8 Exercises 81 3.9 Summary 84 3.10 Remarks 92 4 Orthogonal polynomials 93 4.1 General orthogonal polynomials 93 4.2 Classical polynomials: general properties, I 98 4.3 Classical polynomials: general properties, II 102 4.4 Hermite polynomials 107 4.5 Laguerre polynomials 113 4.6 Jacobi polynomials 116 4.7 Legendre and Chebyshev polynomials 120 4.8 Expansion theorems 125 4.9 Functions of second kind 131 4.10 Exercises 134 4.11 Summary 138 4.12 Remarks 151 5 Discrete orthogonal polynomials 154 5.1 Discrete weights and difference operators 154 5.2 The discrete Rodrigues formula 160 5.3 Charlier polynomials 164 5.4 Krawtchouk polynomials 167 5.5 Meixner polynomials 170 5.6 Chebyshev–Hahn polynomials 173 5.7 Exercises 177 5.8 Summary 179 5.9 Remarks 188 6 Confluent hypergeometric functions 189 6.1 Kummer functions 190 6.2 Kummer functions of the second kind 193 6.3 Solutions when c is an integer 196 6.4 Special cases 198 6.5 Contiguous functions 199 6.6 Parabolic cylinder functions 202 6.7 Whittaker functions 205 Contents vii 6.8 Exercises 209 6.9 Summary 211 6.10 Remarks 220 7 Cylinder functions 221 7.1 Bessel functions 222 7.2 Zeros of real cylinder functions 226 7.3 Integral representations 230 7.4 Hankel functions 233 7.5 Modified Bessel functions 237 7.6 Addition theorems 239 7.7 Fourier transform and Hankel transform 241 7.8 Integrals of Bessel functions 242 7.9 Airy functions 244 7.10 Exercises 248 7.11 Summary 253 7.12 Remarks 262 8 Hypergeometric functions 264 8.1 Hypergeometric series 265 8.2 Solutions of the hypergeometric equation 267 8.3 Linear relations of solutions 270 8.4 Solutions when c is an integer 274 8.5 Contiguous functions 276 8.6 Quadratic transformations 278 8.7 Transformations and special values 282 8.8 Exercises 286 8.9 Summary 290 8.10 Remarks 298 9 Spherical functions 300 9.1 Harmonic polynomials; surface harmonics 301 9.2 Legendre functions 307 9.3 Relations among the Legendre functions 311 9.4 Series expansions and asymptotics 315 9.5 Associated Legendre functions 318 9.6 Relations among associated functions 321 9.7 Exercises 323 9.8 Summary 326 9.9 Remarks 334 viii Contents 10 Asymptotics 335 10.1 Hermite and parabolic cylinder functions 336 10.2 Confluent hypergeometric functions 339 10.3 Hypergeometric functions, Jacobi polynomials 343 10.4 Legendre functions 346 10.5 Steepest descents and stationary phase 348 10.6 Exercises 352 10.7 Summary 364 10.8 Remarks 369 11 Elliptic functions 371 11.1 Integration 372 11.2 Elliptic integrals 375 11.3 Jacobi elliptic functions 380 11.4 Theta functions 384 11.5 Jacobi theta functions and integration 389 11.6 Weierstrass elliptic functions 394 11.7 Exercises 398 11.8 Summary 404 11.9 Remarks 416 Appendix A: Complex analysis 419 Appendix B: Fourier analysis 425 Notation 431 References 433 Author index 449 Index 453 |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : Beals,.Wong-.Special.Functions-.A.Graduate.Text,.CUP,.2010.pdf
2015-01-28 18:40:58, 2.54 M
» 收录本帖的淘帖专辑推荐
Allen的英文原版+百科 | 计算数学与经济统计 | Allen的数学 | 自然科学 |
» 本帖已获得的红花(最新10朵)
» 猜你喜欢
上海工程技术大学【激光智能制造】课题组招收硕士
已经有6人回复
带资进组求博导收留
已经有11人回复
自荐读博
已经有5人回复
求个博导看看
已经有16人回复
上海工程技术大学张培磊教授团队招收博士生
已经有4人回复
求助院士们,这个如何合成呀
已经有4人回复
临港实验室与上科大联培博士招生1名
已经有9人回复
写了一篇“相变储能技术在冷库中应用”的论文,论文内容以实验为主,投什么期刊合适?
已经有6人回复
最近几年招的学生写论文不引自己组发的文章
已经有11人回复
中科院杭州医学所招收博士生一名(生物分析化学、药物递送)
已经有3人回复
» 本主题相关价值贴推荐,对您同样有帮助:
剑桥2012年英文原版Mechanics of the Cell 2nd ed
已经有110人回复
剑桥2009年英文原版APPLIED SOLID MECHANICS
已经有48人回复
【模版】麦肯锡PPT模板(2010英文原版最新最全)
已经有221人回复
2010年新书——激光焊接(英文版)
已经有338人回复
2010年新著——超材料(英文版)
已经有420人回复
Materials Science and Engineering:An Introduction 2010第8版英文原版
已经有390人回复
15楼2016-04-25 13:48:57
14楼2016-04-24 19:34:05
简单回复
2015-02-11 00:02
回复
五星好评 顶一下,感谢分享!
stcmm3楼
2015-02-11 11:04
回复
五星好评 感谢分享 [ 发自手机版 http://muchong.com/3g ]
2015-02-12 01:38
回复
五星好评 顶一下,感谢分享!
gxqh5楼
2015-02-13 17:09
回复
五星好评 顶一下,感谢分享!
gantudou6楼
2015-02-13 22:19
回复
三星好评 顶一下,感谢分享!
asmeng7楼
2015-04-24 20:50
回复
五星好评 顶一下,感谢分享!
2015-04-25 17:07
回复
五星好评 顶一下,感谢分享!
2015-04-25 22:50
回复
五星好评 顶一下,感谢分享!
guli052010楼
2015-09-23 15:21
回复
五星好评 顶一下,感谢分享!
alberthust11楼
2015-09-26 15:40
回复
五星好评 顶一下,感谢分享!
shlytqy12楼
2015-11-13 21:02
回复
五星好评 顶一下,感谢分享!
maojun199813楼
2015-11-13 23:08
回复
五星好评 顶一下,感谢分享!







回复此楼
Yeven_Wong