|
[×ÊÔ´]
¶à¿×½éÖʵĴ«ÈÈ´«ÖÊ»úÖÆ£¨Ó¢Îİ棩
Porous Media Heat and Mass Transfer Transport and Mechanics
A porous material is a solid that is saturated by an interconnected network of pores filled with liquid or gas. It is an inorganic or organic cross linked or uncross linked containing pores of all sizes. The pore network is assumed to be continuous, forming two interpenetrating continua such as in a sponge. Examples of porous media range from porous silicon which is porous on the sub manometer scale to limestone caves and underground river systems on the kilometre scale. Most research on porous media analyses the transport processes in a macro scale approximation.This book focuses on semi-analytical solutions for thermo-poroelasticity field equations; pore size from units to hundreds of micro meters and assumptions and reactive processes as well as the mathematical formulations of these models. It represents the different concepts of porous media as it is used in many areas of applied science and engineering. This book presents current activities and new advances of porous media throughout the world.
Table of contents :
POROUS MEDIA: HEAT AND MASS TRANSFER, TRANSPORT AND MECHANICS......Page 3
NOTICE TO THE READER......Page 6
CONTENTS......Page 7
PREFACE......Page 9
ABSTRACT......Page 13
INTRODUCTION......Page 14
SEGREGATION......Page 15
SEGREGATION IN URBAN ATMOSPHERIC MODELING......Page 16
REACTIVE TRANSPORT AND FLOW MODELING......Page 17
THE TRANSPORT EQUATION......Page 18
TRANSPORT MODELING......Page 21
BIMOLECULAR REACTIVE TRANSPORT......Page 24
NUMERICAL SIMULATIONS......Page 26
SEGREGATION INTENSITY MODEL......Page 29
APPLYING THE MODEL: EXAMPLES AND DISCUSSION......Page 30
REFERENCES......Page 34
ABSTRACT......Page 39
2. STRESS CHANGE MEASUREMENT......Page 40
3.2. Poroelastic Arching Ratios......Page 43
4.1. Background......Page 44
4.2. Elasticity Field Equations......Page 45
4.3. Theory of Strain Nuclei......Page 46
4.4. Theory of Inclusions......Page 48
5. THEORY OF INHOMOGENEITIES......Page 52
6. CASE STUDY: EKOFISK OIL FIELD......Page 57
6.3. Induced Stress Change Analysis......Page 60
7. CONCLUSION......Page 61
8. NOMENCLATURE......Page 62
REFERENCES......Page 65
ABSTRACT......Page 69
2. CLASSIFICATION OF THE POROUS HYDROGELS BY PORE SIZE......Page 70
3.2. Crosslinking Polymerization in Presence of Soluble Substances (Particles of Sugars, Salts) which Are Washed out from the Hydrogel after Polymerization......Page 71
3.3. Crosslinking Polymerization in the Presence of Substances Releasing Gases which Remain in the Resulting Hydrogel......Page 72
4.1. Mercury Porosimetry......Page 73
4.2. BET Surfeace Area Measurements......Page 74
4.3. Scanning Electron Microscopy (SEM)......Page 75
4.4. Confocal Microscopy......Page 76
4.6. Mechanical Properties......Page 77
5. MODIFICATION OF POROUS HYDROGELS......Page 78
6.1. Porous Hydrogels (According to 3.2.) for Tissue Engine......Page 79
6.2. Characterization of the Porous Hydrogels Prepared According to 3.2......Page 80
6.3. Characterization of through-Flow Properties of the Hydrogelswith Communicating Pores......Page 81
8. REFERENCES......Page 82
INTRODUCTION......Page 87
SOME DRUG RELEASE KINETIC EQUATIONS......Page 88
METHODS......Page 89
Menger Sponge......Page 90
Cubic Networks......Page 93
RESULTS AND DISCUSSION......Page 97
CONCLUSIONS......Page 108
NOMENCLATURE......Page 109
REFERENCES......Page 110
ABSTRACT......Page 113
1. INTRODUCTION......Page 114
2.1. Surfactant and Contaminant Coupled Transport Model......Page 115
2.2. Solute Transport Coupled with Two, Multi-Site Sorption Model......Page 116
2.3. Multi-Component Reactive Transport Model......Page 119
2.4. Multi-Component Multi-Phase Flow Model......Page 120
2.5. UTCHEM Model......Page 123
3. DISCUSSION......Page 125
4. CONCLUSIONS AND RECOMMENDATIONS......Page 128
REFERENCES......Page 129
ABSTRACT......Page 133
1. INTRODUCTION......Page 134
2.1. Viscous Flow......Page 135
2.2. Gas Diffusion......Page 140
2.3. Knudsen Diffusion......Page 141
2.4. Surface Diffusion......Page 143
3. PERMEABILITY OF GAS......Page 145
4. LOADING FACTOR DETERMINATION......Page 149
NOTATIONS......Page 161
REFERENCES......Page 162
ABSTRACT......Page 165
1. INTRODUCTION......Page 166
2. NUMERICAL SIMULATION......Page 168
3. POROSITY......Page 170
4. HEAT EXCHANGE......Page 172
5. PERMEABILITY......Page 176
REFERENCES......Page 179
1. INTRODUCTION......Page 183
2. THEORETICAL BACKGROUND......Page 185
3. MATERIALS AND EXPERIMENTAL PROCEDURE......Page 186
4. TRANSFER PROCESS AND SIZE EXCLUSION EFFECT......Page 188
5. PARTICLE DISPERSION......Page 191
6. PARTICLE DEPOSITION KINETICS - MODELLING OF DEPOSITION FUNCTION......Page 193
REFERENCES......Page 197
INTRODUCTION......Page 199
Agent Vapor Breakthrough through Clothing......Page 202
Air Flow Around, through and Underneath Clothing......Page 209
Vapor Concentration and Deposition Distribution Underneath Clothing......Page 216
DISCUSSION......Page 224
CONCLUSIONS......Page 227
SYMBOLS......Page 228
REFERENCES......Page 230
NOMENCLATURE......Page 233
1. INTRODUCTION......Page 235
2. MATHEMATICAL MODEL......Page 236
3. FINITE ELEMENT FORMULATION......Page 237
4. RESULTS AND DISCUSSION......Page 240
REFERENCES......Page 252
INDEX......Page 255 |
» ±¾Ìû¸½¼þ×ÊÔ´Áбí
» ÊÕ¼±¾ÌûµÄÌÔÌûר¼ÍƼö
» ±¾ÌûÒÑ»ñµÃµÄºì»¨£¨×îÐÂ10¶ä£©
» ²ÂÄãϲ»¶
» ±¾Ö÷ÌâÏà¹Ø¼ÛÖµÌùÍƼö£¬¶ÔÄúͬÑùÓаïÖú:
|