| 查看: 143 | 回复: 1 | |||
| 当前主题已经存档。 | |||
[交流]
【求助】谁会证明这些题目,版主,麻烦您将我钱币全部转给解答者(仅限今下午6点前)
|
|||
|
这是“近似算法”的开卷考试题,哪个大虾能够证明的。回帖告知,你的大恩大德,我在此提前拜谢了。 1. Show that the rank function r(• in any matroid (E, C) has the following four properties.(1) r(ø = 0;(2) r(• is monotone increasing;(3) r(• is submodular;(4) for any x E, r({x}) = 1. 2. Suppose for any set of terminals, there exists a minimum spanning tree with vertex degree at most d. Then there exists a Steinerized spanning tree with (d -1) opt Steiner points where opt is the number of Steiner points in an optimal solution for the problem of Steiner Tree with the Minimum Number of Steiner Points. 3. Let I be a maximal independent set and C a minimum connected dominating set in a unit disk graph. Show that | C | 4 | I | + 1. 4. Suppose G is a connected graph with edge weight. Let Q1, Q2 ,…, Qk form a base of cycles in G and ei the longest edge in Qi. Show that the minimum spanning tree of G has length at least length(G) - . 5. Given a rectangle with some point-holes inside. Design a 2-approximation for minimum length rectangular partition for this rectangle. [ Last edited by laizuliang on 2008-5-24 at 10:10 ] |
» 猜你喜欢
假如你的研究生提出不合理要求
已经有7人回复
实验室接单子
已经有4人回复
全日制(定向)博士
已经有4人回复
对氯苯硼酸纯化
已经有3人回复
求助:我三月中下旬出站,青基依托单位怎么办?
已经有12人回复
不自信的我
已经有12人回复
所感
已经有4人回复
要不要辞职读博?
已经有7人回复
北核录用
已经有3人回复
26申博(荧光探针方向,有机合成)
已经有4人回复
2楼2008-05-11 09:41:09












in any matroid (E, C) has the following four properties.
回复此楼