| 查看: 357 | 回复: 0 | |||
[交流]
移动嵌入高斯矩封闭微流中的应用
|
|
The application of the Gaussian moment closure to continuum and microscale flows with embedded, and possibly moving, boundaries is considered. The Gaussian moment closure is briefly reviewed, as is an extension that allows for the treatment of flow of diatomic gases. A parallel upwind, finite volume scheme with adaptive mesh refinement using a Roe-type numerical flux function is described for solving the hyperbolic system of partial differential equations arising from this closure on multiblock meshes with embedded and possibly moving boundaries. The purely hyperbolic nature of moment equations makes them particularly insensitive to discretizations involving grids with irregularities. Typical of adaptive mesh-refinement, embedded-boundary, and Cartesian cut-cell treatments, mesh irregularities are difficult to deal with when second derivatives are required by the physical model. Such is the case for the Navier–Stokes equations. Numerical solutions to mathematical descriptions involving second derivatives show significantly degraded solution quality as compared to solutions of first-order quasi-linear moment equations. Solid-wall boundary conditions are implemented via a Knudsen-layer approximation. Comparisons are made between numerical solutions of the Gaussian model on both body-fitted meshes and meshes with embedded boundaries, as well as to experimental and approximate analytic results for a variety of flow problems. The benefits and potential of the proposed approach for unsteady microscale flow applications having complex geometries are clearly demonstrated. Read More: www.tianyuan520.com |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : 1.J052576.pdf
2014-09-29 22:07:04, 1.44 M
» 猜你喜欢
天津大学招2026.09的博士生,欢迎大家推荐交流(博导是本人)
已经有11人回复
表哥与省会女结婚,父母去帮带孩子被省会女气回家生重病了
已经有9人回复
AI 太可怕了,写基金时,提出想法,直接生成的文字比自己想得深远,还有科学性
已经有10人回复
同年申请2项不同项目,第1个项目里不写第2个项目的信息,可以吗
已经有10人回复
依托企业入选了国家启明计划青年人才。有无高校可以引进的。
已经有11人回复
依托企业入选了国家启明计划青年人才。有无高校可以引进的。
已经有11人回复













回复此楼
点击这里搜索更多相关资源