24小时热门版块排行榜    

查看: 408  |  回复: 2

nandehutu9327

至尊木虫 (职业作家)

[求助] 求助SCI论文是否已检索 已有2人参与

如下论文是否已经SCI检索,非常感谢!
Xu Gongxian, An Improved Geometric Programming Approach for Optimization of Biochemical Systems, Journal of Applied Mathematics, 2014, Volume 2014, Article ID 719496, 10 pages.
回复此楼

» 猜你喜欢

已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

chinastigers

银虫 (正式写手)

【答案】应助回帖

感谢参与,应助指数 +1
已检索。。。。。怎么上传图片啊。。。
2楼2014-07-23 09:30:04
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖

小凡下山

铁杆木虫 (著名写手)

【答案】应助回帖

★ ★ ★ ★ ★
感谢参与,应助指数 +1
nandehutu9327: 金币+5, ★★★★★最佳答案, 多谢! 2014-07-23 09:48:49
FN        Thomson Reuters Web of Science™
VR        1.0
PT        J
AU        Xu, GX
Wang, L
AF        Xu, Gongxian
Wang, Lei
TI        An Improved Geometric Programming Approach for Optimization of Biochemical Systems
SO        JOURNAL OF APPLIED MATHEMATICS
LA        English
DT        Article
ID        METABOLIC CONTROL-THEORY; POWER-LAW APPROXIMATION; SACCHAROMYCES-CEREVISIAE; FERMENTATION PATHWAY; NETWORKS; MAXIMIZATION; STABILITY; BACTERIA; STRATEGY; DESIGN
AB        This paper proposes an improved geometric programming approach to address the optimization of biochemical systems. In the proposed method we take advantage of a special and interesting class of nonlinear kinetic models known as generalized mass action (GMA) models. In most situations optimization problems with GMA models are nonconvex and difficult problems to solve for global optimality. To deal with this difficulty, in this work, some transformation strategy is first used to convert the optimization problem with GMA models into an equivalent problem. Then a convexification technique is applied to transform this resulting optimization problem into a series of standard geometric programming problems that can be solved to reach a global solution. Two case studies are presented to demonstrate the advantages of the proposed method in terms of computational efficiency.
C1        [Xu, Gongxian; Wang, Lei] Bohai Univ, Dept Math, Jinzhou 121013, Peoples R China.
RP        Xu, GX (reprint author), Bohai Univ, Dept Math, Jinzhou 121013, Peoples R China.
EM        gxxu@bhu.edu.cn
FU        National Natural Science Foundation of China [11101051, 11371071]; Program for Liaoning Excellent Talents in University [LJQ2013115]
FX        This work was supported by the National Natural Science Foundation of China (nos. 11101051 and 11371071) and the Program for Liaoning Excellent Talents in University (no. LJQ2013115).
NR        36
TC        0
Z9        0
PU        HINDAWI PUBLISHING CORPORATION
PI        NEW YORK
PA        410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA
SN        1110-757X
EI        1687-0042
J9        J APPL MATH
JI        J. Appl. Math.
PY        2014
AR        719496
DI        10.1155/2014/719496
PG        10
WC        Mathematics, Applied
SC        Mathematics
GA        AJ1GW
UT        WOS:000337405000001
ER       
EF
3楼2014-07-23 09:44:10
已阅   回复此楼   关注TA 给TA发消息 送TA红花 TA的回帖
相关版块跳转 我要订阅楼主 nandehutu9327 的主题更新
信息提示
请填处理意见