²é¿´: 10610  |  »Ø¸´: 316
¡¾½±Àø¡¿ ±¾Ìû±»ÆÀ¼Û253´Î£¬×÷ÕßPurelandÔö¼Ó½ð±Ò 200.2 ¸ö
±¾Ìû²úÉú 1 ¸ö MN-EPI £¬µã»÷ÕâÀï½øÐв鿴
µ±Ç°Ö»ÏÔʾÂú×ãÖ¸¶¨Ìõ¼þµÄ»ØÌû£¬µã»÷ÕâÀï²é¿´±¾»°ÌâµÄËùÓлØÌû

[×ÊÔ´] 2014ÄêÐÂÖø¡ª¡ª½ðÊôÄÉÃ×·ÛÄ©£ºÖÆÔì¡¢±íÕ÷ÓëÓ¦Óã¨Ó¢Îİ棩

Alexander A. Gromov and Ulrich Teipel, "Metal Nanopowders: Production, Characterization, and Energetic Applications"
English | ISBN: 3527333614 | 2014 | 440 pages | PDF | 13 MB

Written with both postgraduate students and researchers in academia and industry in mind, this reference covers the chemistry behind metal nanopowders, including production, characterization, oxidation and combustion. The contributions from renowned international scientists working in the field detail applications in technologies, scale¨Cup processes and safety aspects surrounding their handling and storage.

Contents
Foreword  XIII
List of Contributors   XV
Introduction   XIX
1                Estimation of Thermodynamic Data of Metallic Nanoparticles
Based on Bulk Values  1
Dieter Vollath and Franz Dieter Fischer
1.1             Introduction    1
1.2             Thermodynamic Background   2
1.3             Size-Dependent Materials Data of Nanoparticles   4
1.4             Comparison of Experimental and Calculated Melting
Temperatures   8
1.5             Comparison with Data for the Entropy of Melting    16
1.6             Discussion of the Results  17
1.7             Conclusions   19
1.A            Appendix: Zeros and Extrema of the Free Enthalpy of Melting
Gm-nano    20
References  21

2                Numerical Simulation of Individual Metallic Nanoparticles   25
D.S. Wen and P.X. Song
2.1             Introduction    25
2.2             Molecular Dynamics Simulation    27
2.2.1          Motion of Atoms   27
2.2.2          Temperature and Potential Energy   28
2.2.3          Ensembles  29
2.2.4          Energy Minimization    30
2.2.5          Force Field   30
2.2.6          Potential Truncation and Neighbor List   31
2.2.7          Simulation Program and Platform   32
2.3             Size-Dependent Properties   33
2.3.1          Introduction    33
2.3.2          Simulation Setting   34
2.3.3          Size-Dependent Melting Phenomenon   35
2.4             Sintering Study of Two Nanoparticles   38
2.4.1          Introduction    38
2.4.2          Simulation Setting   40
2.4.3          Sintering Process Characterization   40
2.5             Oxidation of Nanoparticles in the Presence of Oxygen  45
2.5.1          Introduction    45
2.5.2          Simulation Setting   47
2.5.3          Characterization of the Oxidation Process  48
2.6             Heating and Cooling of a Core ¨C Shell Structured Particle   54
2.6.1          Simulation Method   54
2.6.2          Heating Simulation   56
2.6.2.1       Solidification Simulation    59
2.7             Chapter Summary   61
References  63

3                Electroexplosive Nanometals   67
Olga Nazarenko, Alexander Gromov, Alexander Il¡¯in, Julia Pautova, and
Dmitry Tikhonov
3.1             Introduction    67
3.2             Electrical Explosion of Wires Technology for Nanometals
Production   67
3.2.1          The Physics of the Process of Electrical Explosion of Wires   68
3.2.2          Nonequilibrium  State of EEW Products ¨C Nanometals   70
3.2.3          The Equipment Design for nMe Production by Electrical Explosion of
Wires Method   71
3.2.4          Comparative Characteristics of the Technology of Electrical Explosion of Wires   73
3.2.5          The Methods for the Regulation of the Properties of Nanometals
Produced by Electrical Explosion of Wires   74
3.3             Conclusion   75
Acknowledgments   75
References  76

4                Metal Nanopowders Production   79
M. Lerner, A. Vorozhtsov, Sh. Guseinov, and P. Storozhenko
4.1             Introduction    79
4.2             EEW Method of Nanopowder Production   81
4.2.1          Electrical Explosion of Wires Phenomenon   81
4.2.2          Nanopowder Production Equipment   84
4.3             Recondensation NP-Producing Methods: Plasma-Based
Technology  85
4.3.1          Fundamentals of Plasma-Chemical NP Production   89
4.3.2          Vortex-Stabilized Plasma Reactor  90
4.3.3          Starting Material Metering Device (Dispenser)   92
4.3.4          Disperse Material Trapping Devices (Cyclone Collectors and
Filters)   93
4.3.5          NP Encapsulation Unit    94
4.4             Characteristics of Al Nanopowders  95
4.5             Nanopowder Chemical Passivation  97
4.6             Microencapsulation of Al Nanoparticles   99
4.7             The Process of Producing Nanopowders of Aluminum by
Plasma-Based Technology  102
4.7.1          Production of Aluminum Nanopowder   102
4.7.2          Some Properties of Produced Nanopowders of Aluminum,  Boron, Aluminum Boride, and
Silicon   103
References  104

5                Characterization of Metallic Nanoparticle Agglomerates  107
Alfred P. Weber
5.1             Introduction    107
5.2             Description of the Structure of Nanoparticle Agglomerates  108
5.3             Experimental Techniques to Characterize the Agglomerate
Structure   112
5.3.1          TEM and 3-D TEM Tomography   113
5.3.2          Scattering Techniques  115
5.3.3          Direct Determination of Agglomerate Mass and Size   117
5.4             Mechanical Stability   120
5.5             Thermal Stability   124
5.6             Rate-Limiting Steps: Gas Transport versus Reaction Velocity   126
5.7             Conclusions   127
Acknowledgments   128
References  128

6                Passivation of Metal Nanopowders  133
Alexander Gromov, Alexander Il¡¯in, Ulrich Teipel, and Julia Pautova
6.1             Introduction    133
6.2             Theoretical and Experimental Background   136
6.2.1          Chemical and Physical Processes in Aluminum Nanoparticles during
Their Passivation by Slow Oxidation under Atmosphere
(Ar + Air)    136
6.2.2          Chemical Mechanism of Aluminum Nanopowder Passivation by Slow
Air Oxidation   140
6.3             Characteristics of the Passivated Particles  143
6.3.1          Characteristics of Aluminum Nanopowders,  Passivated by Gaseous and Solid Reagents
(Samples No 1 ¨C 6, Table 6.7)   148
6.3.2          Characteristics of Aluminum Nanopowders,  Passivated by Gaseous and Solid Reagents
(Samples No 7 ¨C 11, Table 6.7)   149
6.4             Conclusion   150
Acknowledgments   150
References  150

7                Safety Aspects of Metal Nanopowders  153
M. Lerner, A. Vorozhtsov, and N. Eisenreich
7.1             Introduction    153
7.2             Some Basic Phenomena of Oxidation of Nanometal Particles in
Air    154
7.3             Determination of Fire Hazards of Nanopowders  155
7.4             Sensitivity against Electrostatic Discharge   158
7.5             Ranking of Nanopowders According to Hazard Classification   159
7.6             Demands for Packing   160
References  161

8                Reaction of Aluminum Powders with Liquid Water and Steam  163
Larichev Mikhail Nikolaevich
8.1             Introduction    163
8.2             Experimental Technique for Studying Reaction Al Powders with
Liquid and Gaseous Water   166
8.2.1          Oxidation of Aluminum Powder with Distilled Water   168
8.3             Oxidation of Aluminum Powder in Water Vapor Flow   174
8.4             Nanopowders Passivated with Coatings on the Base of Aluminum
Carbide   175
8.5             Study of Al Powder/H2 O Slurry Samples Heated Linear in ¡®¡®Open
System¡¯¡¯ by STA   183
8.6             Ultrasound (US) and Chemical Activation of Metal Aluminum
Oxidation in Liquid Water   184
8.7             Conclusion   194
Acknowledgments   195
References  195

9                Nanosized Cobalt Catalysts for Hydrogen Storage Systems Based on
Ammonia Borane and Sodium Borohydride  199
Valentina I. Simagina, Oksana V. Komova, and Olga V. Netskina
9.1             Introduction    199
9.1.1          Experimental   200
9.1.2          Study of the Activity of Nanosized Cobalt Boride Catalysts Forming in the Reaction
Medium of Sodium Borohydride and Ammonia
Borane   202
9.2             A Study of Nanosized Cobalt Borides by Physicochemical
Methods   204
9.2.1          A Study of the Crystallization of Amorphous Cobalt Borides Forming in the Medium of
Sodium Borohydride and Ammonia Borane   208
9.2.2          The Effect of the Reaction Medium on the State of Cobalt Boride
Catalysts  214
9.3             Conclusions   223
Acknowledgments   224
References  224

10              Reactive and Metastable Nanomaterials Prepared by Mechanical
Milling    227
Edward L. Dreizin and Mirko Schoenitz
10.1           Introduction    227
10.2           Mechanical Milling  Equipment   228
10.3           Process Parameters  229
10.4           Material Characterization   232
10.5           Ignition and Combustion Experiments   233
10.6           Starting Materials   235
10.7           Mechanically Alloyed and Metal ¨C Metal Composite Powders  236
10.7.1        Preparation and Characterization   236
10.7.2        Thermal Analysis   242
10.7.3        Heated Filament Ignition    245
10.7.4        Constant Volume Explosion   249
10.7.5        Lifted Laminar Flame (LLF) Experiments   250
10.8           Reactive Nanocomposite  Powders  254
10.8.1        Preparation and Characterization   256
10.8.2        Thermally Activated Reactions and their Mechanisms   257
10.8.3        Ignition    263
10.8.4        Particle Combustion Dynamics   267
10.8.5        Constant Volume Explosion   268
10.8.6        Consolidated Samples: Mechanical and Reactive Properties   271
10.9           Conclusions   273
References  274

11              Characterizing Metal Particle Combustion In Situ: Non-equilibrium
Diagnostics   279
Michelle Pantoya, Keerti Kappagantula, and Cory Farley
11.1           Introduction    279
11.2           Ignition and Combustion of Solid Materials   281
11.2.1        Ignition    281
11.2.2        Propagation   282
11.2.3        Flame Speeds  286
11.3           Aluminum Reaction Mechanisms   287
11.4           The Flame Tube   289
11.5           Flame Temperature   292
11.5.1        Background   292
11.5.2        Radiometer Setup   294
11.5.3        Infrared Setup   295
11.5.4        Linking Radiometer and IR Data for a Spatial Distribution of
Temperature   295
11.6           Conclusions   297
Acknowledgments   297
References  297

12              Characterization and Combustion of Aluminum Nanopowders in
Energetic Systems  301
Luigi T. De Luca, Luciano Galfetti, Filippo Maggi, Giovanni Colombo, Christian  Paravan, Alice
Reina, Stefano Dossi, Marco Fassina, and Andrea Sossi
12.1           Fuels in Energetic Systems: Introduction and Literature Survey  301
12.1.1        An Overall Introduction to Energetic Systems  302
12.1.2        Experimental Investigations on Micro and Nano Energetic
Additives   304
12.1.3        Theoretical/Numerical Investigations on Energetic Additives   305
12.1.4        Thermites   308
12.1.4.1     Nanocomposite Thermites   308
12.1.5        Explosives  311
12.1.6        A Short Historical Survey of SPLab Contributions    315
12.1.7        Concluding Remarks on Energetic Additives   319
12.2           Thermochemical Performance of Energetic Additives   319
12.2.1        Ideal Performance Analysis of Metal Fuels   319
12.2.2        Solid Propellant Optimal Formulations   320
12.2.3        Hybrid Rocket Performance Analysis   322
12.2.4        Oxidizing Species in Hybrid Rocket Nozzles   324
12.2.5        Active Aluminum Content and Performance Detriment    325
12.2.6        Two-Phase Losses  326
12.2.7        Concluding Remarks on Theoretical Performance   329
12.3           Nanosized Powder Characterization   330
12.3.1        Introduction    330
12.3.2        Facilities Used for Nanosized Powder Analyses  331
12.3.3        Tested nAl Powders: Production, Coating, and Properties   331
12.3.3.1     Production of nAl Particles  331
12.3.3.2     Coating of nAl Particles  332
12.3.3.3     Morphology and Internal Structure of nAl Particles  333
12.3.3.4     BET Area and Aluminum Content of nAl Particles   333
12.3.4        DSC/TGA Slow Heating Rate Reactivity  337
12.3.4.1     Nonisothermal Oxidation of 50 nm Powder   338
12.3.4.2     Nonisothermal Oxidation of 100 nm Powder   339
12.3.4.3     Passivation/Coating Efficiency   339
12.3.5        High Heating Rate Reactivity  341
12.3.5.1     nAl Powder Ignition Experimental Setup   341
12.3.5.2     nAl Powder Ignition Representative Results  342
12.3.6        CCP Collection by Strand Burner   344
12.3.6.1     Condensed Combustion Product Analysis   344
12.3.7        Concluding Remarks on Powder Characterization   350
12.4           Mechanical and Rheological Behavior with Nanopowders  350
12.4.1        Solid Propellants and Fuels: Mechanical and Rheological
Behavior   350
12.4.2        Viscoelastic Behavior   352
12.4.3        Additive Dispersion   354
12.4.4        Rheology of Suspensions  355
12.4.5        Aging Effects   359
12.4.6        Experimental Results: Data Processing and Discussions   360
12.4.7        Tested Formulations   361
12.4.8        Uniaxial Tensile Stress ¨C Strain Tests  362
12.4.9        Dynamic Mechanical Analysis   364
12.4.10      Rheological Tests  365
12.4.11      Concluding Remarks   367
12.5           Combustion of Nanopowders in Solid Propellants and Fuels   367
12.5.1        Solid Rocket Propellants   368
12.5.1.1     Particle Clustering Phenomena  368
12.5.1.2     Propellant Volume Microstructure   369
12.5.1.3     Steady Combustion Mechanisms of AP/HTPB-Based Composite
Propellants   370
12.5.1.4     Transient Combustion Mechanisms   374
12.5.1.5     Concluding Remarks   379
12.5.2        Solid Rocket Fuels for Hybrid Propulsion   380
12.5.2.1     Tested Ingredients and Solid Fuel Formulations   380
12.5.2.2     Experimental Setup   381
12.5.2.3     Time-Resolved Regression Rate  383
12.5.2.4     Ballistic Characterization: Analyses of the Results  386
12.5.2.5     Concluding Remarks on Solid Fuel Burning    394
12.5.3        Chapter Summary   395
Nomenclature   396
References  400
Index   4112014ÄêÐÂÖø¡ª¡ª½ðÊôÄÉÃ×·ÛÄ©£ºÖÆÔì¡¢±íÕ÷ÓëÓ¦Óã¨Ó¢Îİ棩
English | ISBN: 3527333614 | 2014 | 440 pages | PDF | 13 MB
»Ø¸´´ËÂ¥

» ±¾Ìû¸½¼þ×ÊÔ´Áбí

  • »¶Ó­¼à¶½ºÍ·´À¡£ºÐ¡Ä¾³æ½öÌṩ½»Á÷ƽ̨£¬²»¶Ô¸ÃÄÚÈݸºÔð¡£
    ±¾ÄÚÈÝÓÉÓû§×ÔÖ÷·¢²¼£¬Èç¹ûÆäÄÚÈÝÉæ¼°µ½ÖªÊ¶²úȨÎÊÌ⣬ÆäÔðÈÎÔÚÓÚÓû§±¾ÈË£¬Èç¶Ô°æȨÓÐÒìÒ飬ÇëÁªÏµÓÊÏ䣺xiaomuchong@tal.com
  • ¸½¼þ 1 : Metal_Nanopowders.pdf
  • 2014-05-31 18:29:32, 13.4 M

» ÊÕ¼±¾ÌûµÄÌÔÌûר¼­ÍƼö

Êé¼®ÏÂÔØÍøÕ¾ רҵÊé¼®£¨ÍâÎİ棩WM ﮵ç×ÊÔ´¹²Ïí ÄÉÃ×¼¼ÊõÓëÄÜÔ´¼°Ä£Äâ
Nano&Micro µç»¯Ñ§µçÔ´¡¢µçÔ´¹ÜÀí ÌÔÌùÌÔ±¦ רҵÊé¼®Ö®²ÄÁϼӹ¤
ÄÉÃײÄÁÏ uicorn3 ÓÅÁ¼×ÊÔ´ material science
ÄÉÃ׿Ƽ¼ºÍÄÉÃײÄÁϵç×ÓÊé÷Ò÷Ñ Graphene ¿ÆÑа¡ ŬÁ¦°¡ Ï£ÍûÓÐÓð¡ ²ÄÁÏÎïÀíÓ뻯ѧ
ÓÐÓõÄ×ÊÁϼ°Èí¼þ ËѲØ-¾«-ʵ Nanomatershow µçÄÔÈí¼þ
For PhD abroad in the future ÔÓ»õÆÌ ¿´¿´ ×ÊÔ´Àà°ü

» ±¾ÌûÒÑ»ñµÃµÄºì»¨£¨×îÐÂ10¶ä£©

» ²ÂÄãϲ»¶

» ±¾Ö÷ÌâÏà¹ØÉ̼ÒÍƼö: (ÎÒÒ²ÒªÔÚÕâÀïÍƹã)

» ±¾Ö÷ÌâÏà¹Ø¼ÛÖµÌùÍƼö£¬¶ÔÄúͬÑùÓаïÖú:

ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû

changlinqu

½ð³æ (ÕýʽдÊÖ)


¡ï¡ï¡ï ÈýÐǼ¶,Ö§³Ö¹ÄÀø

ºÜ°ô¡£Ð»Ð»·ÖÏí
121Â¥2014-06-28 19:31:07
ÒÑÔÄ   »Ø¸´´ËÂ¥   ¹Ø×¢TA ¸øTA·¢ÏûÏ¢ ËÍTAºì»¨ TAµÄ»ØÌû
Ïà¹Ø°æ¿éÌøת ÎÒÒª¶©ÔÄÂ¥Ö÷ Pureland µÄÖ÷Ìâ¸üÐÂ
×î¾ßÈËÆøÈÈÌûÍƼö [²é¿´È«²¿] ×÷Õß »Ø/¿´ ×îºó·¢±í
[ÂÛÎÄͶ¸å] ÌôÊý¾ÝÊÇÔì¼ÙÂð +3 µç»°µÄ½¨Éè 2024-12-21 3/150 2024-12-21 13:42 by sheny925
[½Ìʦ֮¼Ò] ½ñÄêµÄ¿ÆÑм¨Ð§Ö»½±ÀøQ1ÁË +11 holypower 2024-12-20 15/750 2024-12-21 10:09 by RRRKKK
[¿¼²©] É격µÄ¿ÆÑмƻ®ÊéÔõôд£¿ +5 °®ºÈ·çµÄÁú¾í²è 2024-12-19 9/450 2024-12-21 09:47 by °®ºÈ·çµÄÁú¾í²è
[¿¼²©] ¶Á²©µÄÓûÍû´ïµ½ÁËáÛ·å +14 СÍè¾Å 2024-12-17 14/700 2024-12-21 07:27 by Skywit520
[˶²©¼ÒÔ°] ÕÐƸ²©Ê¿ +5 ´ó·¢²ÆÊ÷ 2024-12-18 6/300 2024-12-21 06:24 by a893069456
[Óлú½»Á÷] ¹¤ÒÕÐèÇ󣬸¶·Ñ +4 Ï뵱Ȼìá 2024-12-17 6/300 2024-12-21 06:23 by a893069456
[ÕÒ¹¤×÷] »¯Ñ§²©Ê¿ +3 ʵÃûÐĶ¯¹úÃñÃÈÊ 2024-12-17 4/200 2024-12-20 16:17 by pom´÷Ä«¾µ
[˶²©¼ÒÔ°] ²©Ò» +9 ÓÄƤƤƤ 2024-12-17 15/750 2024-12-20 15:08 by ľ̿ÈøÄ·
[¿¼²©] ¶«±±Ê¯ÓÍ´óѧ²©Ê¿ÕÐÉúÁ½Ãû +4 13305437324 2024-12-15 4/200 2024-12-20 12:30 by һ·ìøÐÞ
[½Ìʦ֮¼Ò] Ö»ÊÇ˶ʿ²»ÊDz©Ê¿£¬¼´±ãÓнÌÊÚÖ°³Æ£¬»»¹¤×÷Ò²ºÜÊÜÏÞ +12 ºÓÎ÷Ò¹ÀÉ 2024-12-15 13/650 2024-12-20 11:01 by zhzhzhi
[¿¼²©] É격ÕÒµ¼Ê¦ +6 sepra 2024-12-15 6/300 2024-12-20 04:51 by ÅÖÅֵĴóº£
[ÂÛÎÄͶ¸å] ÂÛÎÄͶ¸å +4 @Ðdz¾@ 2024-12-17 6/300 2024-12-19 09:39 by YXLSYJK
[¿¼²©] Ãñ°ì¸ßУÕÐƸ +3 ´ó·¢²ÆÊ÷ 2024-12-18 3/150 2024-12-18 18:40 by xzxu2012
[Óлú½»Á÷] ÇóÕâ¸ö·´Ó¦µÄ·´Ó¦Ìõ¼þ +6 ½ä½¾½äÔê+ 2024-12-17 6/300 2024-12-18 11:43 by diaodeng
[¿¼²©] ÕÐÊÕ2025¼¶²©Ê¿ +3 cake1 2024-12-15 5/250 2024-12-18 10:59 by cake1
[½Ìʦ֮¼Ò] ÎҸоõѧÉúˮƽºÜ²î£¬ËæËæ±ã±ã¹¤×ÊÉÏÍò +19 guilin2018 2024-12-15 23/1150 2024-12-18 08:57 by zxf984
[»ù½ðÉêÇë] Íø´«¶­³¿ÔºÊ¿ÉæÏÓ24ƪÂÛÎÄÔì¼Ù£¬±¾ÈË»ØÓ¦£º·Ç¶ñÒâÔì¼Ù +6 babu2015 2024-12-17 6/300 2024-12-18 08:46 by llhljsy
[ÂÛÎÄͶ¸å] СÂÛÎÄͶ¸åÇóÖú 100+3 ÈݳǺî 2024-12-16 4/200 2024-12-17 17:07 by ´ó·¢²ÆÊ÷
[ÂÛÎÄͶ¸å] TNMCSͶ¸åÇóÖú 5+3 ½¯´ó׳hh 2024-12-15 8/400 2024-12-17 16:33 by TopEdit
[ÂÛÎÄͶ¸å] É격 +3 µÔijÈË 2024-12-16 3/150 2024-12-17 09:24 by xs74101122
ÐÅÏ¢Ìáʾ
ÇëÌî´¦ÀíÒâ¼û