| 查看: 2125 | 回复: 34 | ||
| 【奖励】 本帖被评价31次,作者九五步枪增加金币 24.6 个 | ||
[资源]
The Linearized Theory of Elasticity
|
||
|
Preface Thisbookis derivedfrom notesusedin teachingafirst-year graduate-level course in elasticityin the DepartmentofMechanicalEngineeringatthe UniversityofPittsburgh. Thisis a moderntreatment ofthe linearized theory ofelasticity, whichis presentedas aspecialization ofthe general theory ofcontinuummechanics.Itincludes acomprehensiveintroduction to tensor analysis,arigorous developmentofthe governingfield equations withanemphasisonrecognizing the assumptionsandapproximationsinherentin the linearized theory, specificationofboundaryconditions,and asurveyofsolutionmethodsfor important classesofproblems. Two-and three-dimensional problems, torsion ofnoncircularcylinders, variational methods,andcomplexvariablemethodsarecovered. Thisbookis intended asthe text for afirst-year graduatecoursein mechanicalorcivilengineering. Sufficientdepthis providedsuchthatthetext canbeusedwithoutaprerequisitecoursein continuummechanics,andthe materialis presentedin suchawayasto preparestudentsfor subsequent coursesin nonlinearelasticity, inelasticity,andfracture mechanics.Alternatively,for acoursethatis precededbyacoursein continuummechanics, thereis enoughadditionalcontentfor afullsemesteroflinearizedelasticity. Itis anticipatedthat studentswillmostlyhaveundergraduatemechanicalorcivilengineeringbackgrounds,withthe mathematicaltraining that entails. Suchstudentshaveusuallynotbeenexposedto modernreal analysisorto abstractvectorspaces, for instance. Thishasnecessarilyhad animpact onthe mannerin whichthe materialin this bookis presented. Anattempthasbeenmadenotto introduce asurfeitofunfamiliarmathematicalnotation. Forexample,the reader willnotfind anymathematical expressionslike (IR x1R) 3 (x, y)t---> x 2+y2 EIR . Additionally,it is deemedworthwhileto spendalittle extratime onindicialnotationandtensors-students whodonotmasterthese conceptswill increasingly find it impossible to follow the rest ofthe material. Whenis the besttime to introduce the linearizing assumptions? This is an important questionwhenteaching linear elasticity. Traditionally, xv XVI Preface the linearization hasbeenintroduced assoonaspossible[e.g., Sokolnikoff (1956) andTimoshenkoandGoodier(1970)]. Thisapproachhasthevirtue ofallowingonetomoveontosolutionmethodsveryquickly. Analternative is todevelopcompletelythe nonlineartheory ofelasticitypriorto linearizing [e.g., AtkinandFox(1980) andSpencer(1980)]. Thisgivesstudents abroadframework that willservethem wellwhenthey take othercourses that address related topics such as fluid dynamics and inelasticity, but scarcely leaves time to learn howto solve the important linear elasticity problemsthat arisein engineering. Perhapsthe bestofallworldsis onein whichstudentsfirst take anintroductory coursein continuummechanics, followed byspecializedclassesin elasticity,fluid dynamics,inelasticity, and soforth. Unfortunately,therealitiesofmanpowerandteachingloads mean that addinganadditionalintroductory coursein continuummechanicsis oftennota practicaloption. Consequently,anattempt hasbeenmade hereto strikeahappymiddleground. Theintroduction oflinearizing assumptionsin this bookis delayedlong enoughto providestudentswitha contextfrom whichthey canseethe relationshipsthatexistbetweenlinear elasticityandotherrelated subjectsandstillhavetime in aone-semester courseto exploresomeofthe important classesofproblemsandsolution methods. In the analysis ofkinematics and measuresofstress, referential (Lagrangian)andspatial (Eulerian) formulations havebeenpresentedseparately. Theviewpointtaken is that linear elasticityis mostnaturallyseen asalinearizationofthereferentialformulation, withfields in the linearized theory viewedas beingoverthe reference configurationofthe body. If desired,thesectionsin whichthespatialformulationsarepresentedcanbe omittedwithminimaldisruption. Theso-called "Gibbsnotation"for tensor analysishasbeenusedinstead ofthe "Riccinotation"favored bymanyauthorsin continuummechanics [e.g., TruesdellandNoll(1992)]. Forexample,thebilinearformofasecondordertensor T withrespect to the vectors u and v (in that order) is givenasu·T·vratherthan u·(Tv). Itis the author'sopinionthat the Gibbsnotationmakesit easierfor studentswhoarenewto the subjectto graspthe conceptsthat aremostimportant atthis level, eventhough it mayobscuresomeofthe moresubtle issues involving the compositionof linear operators,Cartesianproducts,abstractvectorspaces, andthe like. Similarly,the dyad(or tensor product)formed bytwo vectorsu andv is givenasuvrather that u\51 v,sothat the dyadicrepresentation ofthe second-ordertensor Tinanorthonormalvectorbasisis T=Tijeiejrather than T=Tijei\51 ej. Asmuchasis practical,resultsarepresentedinbothabasis-independent tensorialform andabasis-dependentscalarcomponentform. Forinstance, Preface the traction-stress relation derivedin Chapter4is givenas XVll Indoingthis, anorthonormalvectorbasisand,whennecessary,aCartesian coordinatesystemarepresumed.Itis felt thatstudentsareoverwhelmedby atoo earlyintroduction to generalcurvilinearcoordinatesand,sincethey arenotrequired for the applicationscoveredin this book,they havebeen relegated to an appendix. Cylindricalandspherical coordinatesystems are treated explicitly, rather than as special cases ofgeneralcurvilinear coordinates. Thetensor notationreinforces the fact that the underlying physicalprinciplesarevalidin anycoordinatesystem. Themechanicsofmaterials,aspresentedto sophomoreengineeringmajors in a typical undergraduateprogramin the UnitedStates,is briefly reviewed in Chapter1. Thismaterialsets the stage, in some sense, for whatfollows, butmaybeomitted. Chapter2acquaintsthe studentwith the notationandconventionsthat areto beused,introduces the concept ofindicial notation, anddevelops the tensor analysis. Thefoundations for the linearized theory ofelasticity are developedin Chapters3to 6. Theremaining chapterscoversolutionmethodsfor avarietyofclassesof problemsrangingfrom two-dimensional antiplanestrainproblemstothreedimensionalproblemsinvolving dissimilarinclusions. Theorderin which they arecoveredis somewhatarbitrary,exceptthatChapter11oncomplex variablemethodsassumesthatChapter7ontwo-dimensional problemshas beencovered. Pittsburgh,Pennsylvania WilliamS. Slaughter |
» 本帖附件资源列表
-
欢迎监督和反馈:小木虫仅提供交流平台,不对该内容负责。
本内容由用户自主发布,如果其内容涉及到知识产权问题,其责任在于用户本人,如对版权有异议,请联系邮箱:xiaomuchong@tal.com - 附件 1 : (_)_William_S._Slaughter__(auth.)-The_Linearized_Theory_of_Elasticity-Birkh_user_Boston_(2002).pdf
2014-05-18 19:52:55, 42.38 M
» 猜你喜欢
请问哪里可以有青B申请的本子可以借鉴一下。
已经有4人回复
真诚求助:手里的省社科项目结项要求主持人一篇中文核心,有什么渠道能发核心吗
已经有6人回复
孩子确诊有中度注意力缺陷
已经有14人回复
三甲基碘化亚砜的氧化反应
已经有4人回复
请问下大家为什么这个铃木偶联几乎不反应呢
已经有5人回复
请问有评职称,把科研教学业绩算分排序的高校吗
已经有5人回复
2025冷门绝学什么时候出结果
已经有3人回复
天津工业大学郑柳春团队欢迎化学化工、高分子化学或有机合成方向的博士生和硕士生加入
已经有4人回复
康复大学泰山学者周祺惠团队招收博士研究生
已经有6人回复
AI论文写作工具:是科研加速器还是学术作弊器?
已经有3人回复
» 本主题相关价值贴推荐,对您同样有帮助:
6楼2014-05-19 07:22:38
9楼2014-07-22 20:07:38
18楼2015-08-18 02:29:26
28楼2017-02-27 07:26:49
30楼2017-08-28 12:02:39
简单回复
2014-05-18 20:32
回复
五星好评 顶一下,感谢分享!
2014-05-18 21:12
回复
五星好评 顶一下,感谢分享!
civilp4楼
2014-05-19 00:07
回复
五星好评 顶一下,感谢分享!
班若鹰5楼
2014-05-19 07:22
回复
五星好评 顶一下,感谢分享!
hnzzncwu7楼
2014-05-21 08:44
回复
五星好评 顶一下,感谢分享!
神奇小s8楼
2014-07-10 07:54
回复
五星好评 顶一下,感谢分享!
imgeduo10楼
2014-07-28 06:49
回复
五星好评 顶一下,感谢分享!
diaolong11楼
2014-10-09 22:58
回复
五星好评 顶一下,感谢分享!
zhanggs12楼
2014-10-29 18:28
回复
五星好评 顶一下,感谢分享!
yanhuang072513楼
2014-12-13 19:22
回复
五星好评 顶一下,感谢分享!
断线的小风筝14楼
2015-04-11 10:20
回复
五星好评 顶一下,感谢分享!
maxieer15楼
2015-04-14 19:30
回复
五星好评 顶一下,感谢分享!
clown911101416楼
2015-06-03 17:18
回复
五星好评 顶一下,感谢分享!
cadxc17楼
2015-06-18 11:27
回复
五星好评 顶一下,感谢分享!
0602311119楼
2015-10-16 08:49
回复
五星好评 顶一下,感谢分享!
淡淡夢影20楼
2015-11-29 23:44
回复
五星好评 顶一下,感谢分享!
sz19873221楼
2015-12-20 16:47
回复
五星好评 顶一下,感谢分享!
trcank22楼
2016-01-21 17:54
回复
五星好评 顶一下,感谢分享!
terrys23楼
2016-03-04 17:38
回复
五星好评 顶一下,感谢分享!
a658599824楼
2016-03-08 21:27
回复
五星好评 顶一下,感谢分享!
疾风飞行25楼
2016-10-10 11:05
回复
五星好评 顶一下,感谢分享!
kkx26楼
2016-11-30 09:11
回复
五星好评 顶一下,感谢分享!
雷神之锤11127楼
2016-11-30 15:55
回复
五星好评 顶一下,感谢分享!
wtyatzoo29楼
2017-06-07 17:46
回复
五星好评 顶一下,感谢分享!
sujianping31楼
2017-12-06 08:58
回复
五星好评 顶一下,感谢分享!
三星201032楼
2018-04-28 18:35
回复
五星好评 顶一下,感谢分享!
晴主人33楼
2018-05-01 20:18
回复
五星好评 顶一下,感谢分享!
64956700234楼
2018-05-04 22:10
回复
五星好评 顶一下,感谢分享!
atwoodcloyd35楼
2019-08-01 19:05
回复
感谢分享!













回复此楼